
DATA SCIENCE

& SPIKES

Fabien Campillo

2025

Data Sciences and Spikes

Fabien Campillo

Oct 03, 2025

CONTENTS

I Content 3

1 Resources and references 5
1.1 Some Python packages . 5
1.2 Resources and references for general data sciences . 6
1.3 Resources and references for data sciences in neurosciences . 6
1.4 Sometimes we don’t even know what we’re talking about . 8

2 Electrophysiology data 9
2.1 Types of electrophysiology recordings . 9
2.2 Common electrophysiology data formats . 10
2.3 Most used electrophysiology data formats . 10
2.4 Databases . 13
2.5 Gateways with Python . 15

3 Exploring a database with csv 17
3.1 Building a csvិle . 17
3.2 Good practrices about records directory . 18
3.3 Back to the case study . 19
3.4 Pandas DataFrame . 20
3.5 Back to the case study: the boring job ! . 21
3.6 Exploring the metadata . 22
3.7 First we read the csv and create a dataframe object: . 22
3.8 Filtering . 25
3.9 csvkit the command-line Swiss Army knife . 26

4 Exploring records with pyabf 29
4.1 Using External Python Packages . 29
4.2 pyABF on the net . 29
4.3 Exploring abf ិles . 30
4.4 Plots . 34

II Appendices 39

5 Installing Python and some tools 41
5.1 Main Python distributions for data sciences . 41
5.2 Installing Anaconda and Miniconda . 43
5.3 Conda . 44
5.4 Conda virtual environment . 45
5.5 Setting Up the Conda Virtual Environment for This Project . 48

6 Interactive computing with Jupyter bazaar 51
6.1 Jupyter and around . 51
6.2 Colab . 52
6.3 Jupyter {book} . 52

i

7 csv in the context of panda and csvkit 55
7.1 Basics about csv . 55
7.2 Pandas DataFrame . 55
7.3 csvkit the command-line Swiss Army knife . 57

8 Diagnostic 59
8.1 Myst . 59
8.2 Emoji Test Page . 59

Index 61

ii

Data Sciences and Spikes

This Jupyter Book is designed to help you get started in data science by exploring electrophysiological data, especially

spike train recordings, in a practical and accessible way.

Even though we are mainly interested in processing electrophysiology measurements such as spikes, we will attempt
an overview of neuroscience resources.

We will focus on electrophysiology data processing and distinguish between:

• M/EEG data, non-invasive/extracranial,

• and invasive data at the single neuron level or from a population of neurons, notably using MEA (Multi-
Electrode Array).

It is this second category that is of most interest to us (MathNeuro). The ិrst category is very well developed. Pro-
cessing extracranial electrophysiological data (EEG/MEG) is generally more complex than processing intracranial
measurements (spikes, LFP, ECoG). In intracranial recordings, electrodes are close to neurons: the signal is more
localized, with a better signal-to-noise ratio, which facilitates the identiិcation of action potentials or local ិelds. In
contrast, extracranial signals are heavily attenuated, resulting from the summation of millions of neurons and dis-
torted by cranial tissues. They are also contaminated by numerous artifacts. Analysis therefore requires advanced
processing (ិltering, correction, modeling) and solving the inverse problem (retrieving brain sources from incomplete
and ambiguous measurements, which is a mathematically ill-posed problem).

Important

This notebook relies on Python packages such as numpy, matplotlib, pyabf, seaborn, and others. To
ensure reproducibility and avoid conីicts with other Python projects, it is strongly recommended to use a
dedicated virtual environment. For detailed instructions on setting up the environment, see the beginning of
Chapter Exploring records with pyabf.

This Jupyter Book is part of the Data Science Bootcamp for MathNeuro and is made openly accessible to the broader
community.

This Jupyter book https://fabien-campillo.github.io/data-science-spikes/ • The GitHub repository https://github.
com/fabien-campillo/data-science-spikes

Several parts of this book, including sections of the Markdown content and Python source code, were generated or

reણned with the assistance of ChatGPT-4, which also provided guidance on building this Jupyter Book. Some of the

prompts used with ChatGPT are preserved as comments in the Markdown cells, providing a peek into the questions and

guidance that shaped the content. While this tool was helpful in drafting and organizing content, all remaining errors

and ણnal decisions are entirely my own.

By Fabien Campillo Email me © Copyright 2025. This work is licensed under CC BY-NC-SA 4.0 (Creative Com-
mons Attribution-NonCommercial-ShareAlike).

CONTENTS 1

https://team.inria.fr/mathneuro/
https://fabien-campillo.github.io/data-science-spikes/
https://github.com/fabien-campillo/data-science-spikes
https://github.com/fabien-campillo/data-science-spikes
https://www-sop.inria.fr/members/Fabien.Campillo/
mailto:fabien.campillo@gmail.com

Data Sciences and Spikes

2 CONTENTS

Part I

Content

3

CHAPTER

ONE

RESOURCES AND REFERENCES

I’ve put together some resources and references using Python (but keep in mind, R is another popular route into data
science).

1.1 Some Python packages

First, I list some indispensable Python libraries used in data science. In addition to core Python, you should also start
getting familiar with a few other tools:

• Python’s classics:

– NumPy – numerical computing and array manipulation.

– SciPy – scientiិc computing and statistics.

– Matplotlib – basic plotting library.

• Data Manipulation:

– Pandas – data structures and analysis tools.

• Statistical Analysis:

– statsmodels – estimation of statistical models, statistical tests, and data exploration.

• Machine Learning:

– Scikit-learn – widely used machine learning library.

• Natural Language Processing (NLP):

– NLTK – platform for working with human language data.

– SpaCy – main library for NLP tasks.

– Gensim – topic modeling library.

• Data Visualization:

– Seaborn – statistical data visualization.

– Plotly – interactive graphing library.

• Web Scraping:

– BeautifulSoup – extracting data from HTML ិles.

5

https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://pandas.pydata.org
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
https://www.nltk.org
https://spacy.io
https://radimrehurek.com/gensim/intro.html
https://seaborn.pydata.org
https://plotly.com/python/
https://beautiful-soup-4.readthedocs.io/en/latest/

Data Sciences and Spikes

1.2 Resources and references for general data sciences

1.2.1 Books

• An Introduction to Statistical Learning with Applications in Python, Springer 2023, by Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor. See Book Homepage and Resources
with the PDF and the associated Youtube videos with Trevor Hastie & Jonathan Taylor (and it starts with
Trevor complimenting Jonathan on his new haircut, why not…). Trevor Hastie is one of the big dudes in
statistics (see his book “The Elements of Statistical Learning: Data Mining, Inference, and Prediction”), and
Jonathan Taylor is a younger statistician with a nice new haircut.

• Python for Data Analysis (3rd ed.), O’Reilly 2022, by Wes McKinney a creator of Panda. The open edition
is avalaible, with the codes, see his GitHub for other resources.

• Python Data Science Handbook (2nd ed.), O’Reilly 2022, by Jake VanderPlas – full text, and the associated
Jupyter Notebook (very nice!), see his GitHub for other resources.

• Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (2nd ed.), O’Reilly
2020, by Peter Bruce, Andrew Bruce, Peter Gedeck. See the GitHub with the Python codes and notebooks.

• Python for Probability, Statistics, andMachine Learning (3rd ed.), Springer 2022, by José Unpingco. See
his GitHub for other resources.

• Hands-On Machine Learning with Scikit-Learn, Keras & Tensorຄow (3rd ed.), O’Reilly 2022, by Au-
rélien Géron, and the associated notebooks, see his GitHub for other resources. Machine learning and deep
Learning.

• Deep Learning Illustrated, Addison-Wesley 2019, by Jon Krohn, with the associated notebooks, the concept
if quite interesting. See also this github.

I do not provide references on the basic mathematical foundations of data science, which usually include linear alge-
bra, calculus (with a focus on optimization), probability theory, statistics (both elementary and inferential), discrete
mathematics (graphs, combinatorics, logic), and sometimes numerical methods. I also do not include general ref-
erences on statistics, machine learning, or Python programming itself, as well as topics related to databases such as
SQL, relational database design, and NoSQL systems. There are numerous high-quality resources available for all
these areas.

1.2.2 Jupyter (note)books

Among the previous references:

• Jake VanderPlas’ Python Data Science Handbook

• Aurélien Géron’s notebooks, a series of Jupyter notebooks that walk you through the fundamentals of Machine
Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

• Wes McKinney’s “Python for Data Analysis” open edition and notebooks.

1.3 Resources and references for data sciences in neurosciences

1.3.1 References

• Python inNeuroscience, E.Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, andA. P. Davison
Frontiers in Neuroinformatics, 9, 2015.

• Case Studies in Neural Data Analysis, 2016 - The book presents MATLAB tools, but there is an asso-
ciated GitHub repository for Python. The book primarily covers extracranial data, except Chapter 8: Basic
Visualizations and Descriptive Statistics of SpikeTrainData.

6 Chapter 1. Resources and references

https://link.springer.com/book/10.1007/978-3-031-38747-0
https://www.statlearning.com
https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html
https://youtube.com/playlist?list=PLoROMvodv4rNHU1-iPeDRH-J0cL-CrIda&feature=shared
https://hastie.su.domains
https://hastie.su.domains/ElemStatLearn/
https://jtaylor.su.domains
https://www.oreilly.com/library/view/python-for-data/9781491957653/
https://wesmckinney.com
https://wesmckinney.com/book/
https://github.com/wesm/pydata-book/tree/3rd-edition
https://github.com/wesm
https://www.oreilly.com/library/view/python-data-science/9781491912126/
http://vanderplas.com
https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/jakevdp
https://www.oreilly.com/library/view/practical-statistics-for/9781492072935/
https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master
https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master/python
https://link.springer.com/book/10.1007/978-3-031-04648-3
https://github.com/unpingco
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://github.com/ageron
https://github.com/ageron
https://github.com/ageron/handson-ml2
https://github.com/ageron
https://www.deeplearningillustrated.com
https://www.jonkrohn.com
https://github.com/the-deep-learners/deep-learning-illustrated
https://github.com/jonkrohn/DLTFpT
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/ageron/handson-ml2
https://wesmckinney.com/book/
https://github.com/wesm/pydata-book/tree/3rd-edition
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2015.00011/full
https://mitpress.ublish.com/book/case-studies-neural-data-analysis
https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden

Data Sciences and Spikes

• Neural Data Science (2020–23), Aaron J. Newman from the NeuroCognitive Imaging Lab (Dalhousie Uni-
versity, Halifax).
Starts from scratch, especially in Python. Includes a section on Single Unit Data. See the GitHub repository
for the Jupyter Book and the YouTube channel Neural Data Science with Python.

• Neural Data Science: A Primer with MATLAB and Python, Erik Lee Nylen and Pascal Wallisch, 2017.
See the table of contents.

1.3.2 Spike Train and Electrophysiology Data Analysis

Math books

• The contributions of Robert E. Kass are noteworthy. Rob Kass is a renowned statistician, and he has also
contributed to the modeling and statistical analysis of Neural Spike Train Data, and to machine learning. One
can refer to his book Analysis of Neural Data, which is actually an excellent introductory book on probability
and statistics through the lens of neural data. His page Contributions to Analysis of Neural Spike Train Data
also provides an overview of his contributions to the ិeld.

• Analysis of Parallel Spike Trains edited by S. Grün and S. Rotter (Springer, 2010).

• Stochastic Models for Spike Trains of Single Neurons by G. Sampath and S. K. Srinivasan

Python packages

• syncopy - Systems Neuroscience Computing in Python: a Python package for large-scale analysis of electro-
physiological data, with the following article.

• MNE - Open-source Python package for exploring, visualizing, and analyzing human neurophysiological data:
MEG, EEG, sEEG, ECoG, NIRS, and more).

• pynapple – Python Neural Analysis Package. Pynapple is a lightweight Python library for neurophysiological
data analysis. See the article: Pynapple, a toolbox for data analysis in neuroscience, 2023.

• osl-ephys - This package contains models for analysing electrophysiology data. It builds on top of the widely
used MNE-Python package and contains analysis tools for M/EEG sensor and source space analysis. From the
Oxford Centre for Human Brain Activity Analysis Group, with this GitHub repository and this 2025 paper:
osl-ephys: a Python toolbox for the analysis of electrophysiology data.

• Elephant - Electrophysiology Analysis Toolkit is an emerging open-source, community centered library for
the analysis of electrophysiological data in the Python programming language. Elephant focuses on generic
analysis functions for spike train data and time series recordings from electrodes GitHub repository

• NeuralEnsemble – a community-based initiative to promote and coordinate open-source software develop-
ment in neuroscience. Inactive since 2022.

Jupyter (note)book(s)

• Spike sorting the ‘Do It Yourself’ way a Jupyter book by Christophe Pouzat with the gitlab repository.
See also the Probabilistic Spiking Neuronal Nets: Companion associated with tge book Probabilistic Spiking
Neuronal Nets co-authored with Antonio Galves and Eva Löcherbach.

1.3. Resources and references for data sciences in neurosciences 7

https://neuraldatascience.io/
https://www.dal.ca/faculty/science/psychology_neuroscience/faculty-staff/our-faculty/aaron-newman.html
https://www.ncilab.ca
https://neuraldatascience.io/6-single_unit/introduction.html
https://github.com/neural-data-science/NESC_3505_textbook
https://www.youtube.com/playlist?list=PLtfEWMIgWS22MMZjPIzBRE2cHhMcvEKwp
https://www.sciencedirect.com/book/9780128040430/neural-data-science
https://www.stat.cmu.edu/~kass/
https://www.stat.cmu.edu/~kass/research.html#and
https://www.stat.cmu.edu/~kass/contrib.html
https://link.springer.com/book/10.1007/978-1-4419-5675-0
https://link.springer.com/book/10.1007/978-3-642-48302-8
https://github.com/esi-neuroscience/syncopy
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2024.1448161/full
https://mne.tools/stable/index.html
https://pynapple.org
https://elifesciences.org/reviewed-preprints/85786
https://osl-ephys.readthedocs.io/en/latest/
https://www.psych.ox.ac.uk/research/ohba-analysis-group
https://github.com/OHBA-analysis/OHBA-Examples/tree/main
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1522675/full
https://elephant.readthedocs.io/en/latest/
https://github.com/NeuralEnsemble/elephant
http://neuralensemble.org
https://c_pouzat.gitlab.io/spike-sorting-the-diy-way/
https://xtof.perso.math.cnrs.fr
https://gitlab.com/c_pouzat/spike-sorting-the-diy-way
https://probabilistic-spiking-neuronal-nets-c-pouzat-491a1ca82ffec5679d.gitlab.io/index.html
https://link.springer.com/book/10.1007/978-3-031-68409-8
https://link.springer.com/book/10.1007/978-3-031-68409-8

Data Sciences and Spikes

1.3.3 Blog(s) and blog posts

• Spikes and Bursts — an interesting blog by David Cabrera-Garcia, where he explores various concepts.
He also runs a YouTube channel and shares projects on GitHub. An interesting post:

– Patch-clamp data analysis in Python: animate time series data.

• Patch clamp electrophysiology analysis with Python (2023) by Vincenzo Mastrolia

1.3.4 Misc.

• ElecFeX - A MATLAB-based Electrophysiological Feature eXtraction toolbox for single-cell intracellular
recordings. See the article: ElecFeX is a user-friendly toolbox for eથcient feature extraction from single-cell

electrophysiological recordings

1.3.5 Other tools

Before analyzing data, we ិrst need to read electrophysiology recordings and handle the diាerent standards used.

• The pyABF library was created by Scott Harden. We will return to that package in a future section.

1.4 Sometimes we don’t even know what we’re talking about

Data science, statistics, math, machine learning—sure, they’re all great when applied to modeling and
analyzing spikes and bursts. But let’s not forget: we also need to paddle upstream to the very source of
those signals. Where do the spikes and bursts records come from? The experimental lab. And what do
they actually represent? The wild and real dynamics of real neurons.

• Guide to Research Techniques in Neuroscience by Matt Carter, Rachel Essner, Nitsan Goldstein, and Man-
asi Iyer (2022, 3rd Edition)

• Electrophysiological Recording Techniques edited by Robert P. Vertes and Timothy Allen (Springer, 2022).

• Introduction to Electrophysiological Methods and Instrumentation by Franklin Bretschneider and Jan R.
de Weille (Academic Press, Second edition, 2019).

• Basic Electrophysiological Methods edited by Matt Carter and Ellen Covey (Oxford University Press, 2015)

• The Laboratory Computer: A Practical Guide for Physiologists and Neuroscientists by John Dempster
(Academic Press, 2001).

8 Chapter 1. Resources and references

https://spikesandbursts.wordpress.com
https://scholar.google.com/citations?user=Dmwnwb4AAAAJ&hl=en
https://spikesandbursts.wordpress.com/neuroscience-contents/
https://www.youtube.com/@spikesandbursts/videos
https://github.com/dav1dcg
https://spikesandbursts.wordpress.com/tag/patch-clamp/
https://www.scientifica.cn/neurowire/patch-clamp-electrophysiology-analysis-with-python
https://devneuro.org/cdn/people-detail.php?personID=2242
https://github.com/XinyueMa-neuro/ElecFeX
https://www.sciencedirect.com/science/article/pii/S2667237524001437
https://www.sciencedirect.com/science/article/pii/S2667237524001437
https://pypi.org/project/pyabf/
https://swharden.com/about/
https://shop.elsevier.com/books/guide-to-research-techniques-in-neuroscience/carter/978-0-12-818646-6
https://link.springer.com/book/10.1007/978-1-0716-2631-3
https://www.sciencedirect.com/book/9780128142103/introduction-to-electrophysiological-methods-and-instrumentation#book-info
https://academic.oup.com/book/25187
https://www.sciencedirect.com/book/9780122095511/the-laboratory-computer

CHAPTER

TWO

ELECTROPHYSIOLOGY DATA

Accessing electrophysiology records can be diឹcult, and working with them is often cumbersome, as they typically
require speciិc formats to be quickly accessible and usable. To make data more widely available, it is crucial to
develop not only open-access databases but also standardized ិle formats. Historically, data formats were tied to
the devices that generated them—often proprietary and incompatible with other systems. This fragmentation soon
became a barrier to scientiិc progress. In what follows, we ិrst introduce common ិle formats, then present several
relevant databases, and ិnally show how to work with them in Python.

2.1 Types of electrophysiology recordings

Electrophysiology covers a wide range of recording techniques, each suited to diាerent biological questions.
Here are the main categories:

• Intracellular Recordings - Sharp electrode recordings: measure the membrane potential inside a single cell •
Whole-cell patch clamp: provides detailed access to ionic currents, membrane potential, and synaptic inputs •
Single-channel recordings: resolve the activity of individual ion channels.

• Extracellular Recordings - Single-unit recordings: detect action potentials (“spikes”) from individual neurons
using ិne electrodes •Multi-unit recordings: capture spikes from small groups of neurons near the electrode tip
• Multi-electrode arrays (MEA): record from dozens to thousands of electrodes simultaneously across a neural
population.

• Field Potential Recordings - Local ણeld potentials (LFPs): measure summed synaptic activity and slower
ីuctuations in a local region • ECoG (electrocorticography): records ិeld potentials directly from the cortical
surface.

• Non-Invasive Recordings - EEG (electroencephalography): scalp recordings of brain activity with high tem-
poral resolution • MEG (magnetoencephalography): detects magnetic ិelds generated by neuronal currents.

• Other Specialized Methods - EMG (electromyography): records muscle activity • ERG (electroretinography):
records retinal responses to light • Patch-clamp in slices/in vivo: advanced combinations allowing intracellular
access in complex preparations.

9

Data Sciences and Spikes

2.2 Common electrophysiology data formats

For-
mat

Full Name Typical Use Open-
ness

Notes

ABF Axon Binary File
(Molecular Devices)

Patch-clamp and in-
tracellular recordings
(pCLAMP, Clampex)

Pro-
pri-
etary

Very common in cellular electrophysiol-
ogy; ABF1 (older), ABF2 (newer).

IBW Igor Binary Wave (Igor
Pro)

Waveform storage and
analysis

Pro-
pri-
etary

Widely used in physiology labs with Igor
Pro; supports multidimensional data.

HEKA Patchmaster
(DAT/PGF/PUF)

Patch-clamp recordings
(HEKA ampliិers)

Pro-
pri-
etary

Popular in Europe; rich metadata but
tied to vendor software.

CED
SON

Cambridge Electronic
Design (Spike2)

Extracellular recordings,
spike trains

Pro-
pri-
etary

Common for multi-electrode recordings
and stimulus protocols.

WCP WinWCP File (Strath-
clyde)

Patch-clamp and voltage-
clamp recordings

Semi-
open

Free Windows-only software; popular in
teaching and some labs; less standard-
ized than ABF/HEKA.

NWB Neurodata Without
Borders

Sharing neurophysiology
data (spikes, LFPs, imag-
ing)

Open
stan-
dard

Community-driven, based on HDF5;
widely promoted for reproducibility and
FAIR data.

BIDS-
iEEG

Brain Imaging Data
Structure (intracranial
EEG extension)

EEG, ECoG, iEEG Open
stan-
dard

Growing adoption; integrates with neu-
roimaging standards.

MAT MATLAB File (.mat) Custom lab stor-
age/analysis

Semi-
open

Extremely common, but not standard-
ized for sharing.

HDF5 Hierarchical Data For-
mat 5

Large, structured
datasets

Open Flexible backbone format; NWB is built
on HDF5.

EDF/BDFEuropean Data Format
/ BioSemi Data Format

EEG, PSG, clinical neu-
rophysiology

Open Standard in sleep studies and EEG; sup-
ported by many clinical systems.

CSV/TXTComma-/Tab-
separated Values

Generic export of time
series or metadata

Open Universally readable, but loses rich
metadata and structure.

WAV Waveform Audio File
(Windows)

Audio-like exports of
signals/spike trains

Open Native Windows format; sometimes
used for stimulus or simpliិed data ex-
port.

2.3 Most used electrophysiology data formats

• ABF (Axon Binary File) - ABF is a proprietary binary format developed byMolecular Devices. It is widely
used for patch-clamp and intracellular recordings, especially in cellular electrophysiology research. ABF
ិles store both the raw electrophysiological signals and metadata, such as sampling rate, stimulus protocols,
and experimental parameters. Versions include ABF1 (older) and ABF2 (newer).

• NWB (NeurodataWithout Borders) - NWB is an open, community-driven standard designed for sharing
and long-term storage of neurophysiology data. It is based on HDF5 and supports raw signals, metadata,
experimental design, stimuli, and derived data. NWB promotes reproducibility and FAIR principles, and is
increasingly adopted by labs worldwide.

• IBW (Igor Binary Wave) - IBW is the binary wave format used by Igor Pro software. It is popular for
waveform storage and analysis, particularly in physiology labs. IBW supports multi-dimensional data, an-
notations, and is often part of custom analysis pipelines. Despite being proprietary, it remains widely used
because of historical and workីow reasons.

10 Chapter 2. Electrophysiology data

Data Sciences and Spikes

2.3.1 Summary table

Format Developer Proprietary
/ Open

Free to use? Main Use Adoption

ABF
(Axon
Binary
File)

Originally Axon
Instruments →
now Molecular
Devices

Propri-
etary (specs
partially
available,
but tied to
pCLAMP)

Reading libraries are
free (e.g., pyABF),
but creating/using
ABF ຃les requires
pCLAMP, which is
commercial

Electrophysiology
(patch-clamp,
voltage/current
recordings)

Widely used in
labs with Molec-
ular Devices
equipment

NWB
(Neu-
rodata
With-
out
Bor-
ders)

Community-
driven (Allen
Institute, HHMI
Janelia, Berke-
ley Lab, INCF,
etc.)

Fully open-
source and
community
standard

Free (developed and
maintained openly on
GitHub)

Standardized
storage/sharing of
neuroscience data
(e-phys, imaging,
behavioral, meta-
data)

Growing adop-
tion in large-scale
projects, espe-
cially for data
sharing and FAIR
science

IBW
(Igor
Binary
Wave)

WaveMetrics,
Inc.

Propri-
etary
(closed
format,
documenta-
tion partly
available)

Requires Igor Pro
(commercial software).
Some third-party li-
braries exist to read
IBW for free

General scientiិc
data analysis and
visualization

Popular in
biophysics,
neuroscience,
spectroscopy

2.3. Most used electrophysiology data formats 11

Data Sciences and Spikes

2.3.2 Companies and formats

Company HQ Main Products (Neu-
ronal EP)

Native Data
Formats

Conversion / Notes

Molecular
Devices (Axon
Instruments)

USA Patch-clamp ampliិers
(Axopatch, Multi-
Clamp), digitizers
(Digidata), pCLAMP
software

ABF (Axon
Binary File):
ABF1 (legacy),
ABF2 (current)

Widely used in patch-clamp. Readable
with AxoGraph, Clampិt. Python:
pyABF, Neo. Export to NWB possi-
ble.

HEKA
Elektronik
(Harvard
Bioscience)

Ger-
many

Patch-clamp ampliិers
(EPC series), Patchmas-
ter software

.dat / .pgf / .pul Proprietary binary; support in
Neo. Conversion pipelines exist
for NWB/NIX.

Multi Chan-
nel Systems
(MCS, Har-
vard Bio-
science)

Ger-
many

Multi-electrode arrays
(MEAs), in vitro & in
vivo systems

.mcd (pro-
prietary), .h5
(newer systems)

SDK/API for reading .mcd. .h5 is
HDF5 and integrates more easily. Neo
+ NWB supported.

Blackrock
Neurotech

USA Utah arrays, high-density
neural recording for BCI

NSx (contin-
uous), NEV
(spike/event)

Openly documented. MATLAB,
Python APIs. Supported in Neo.
Standard in BCI research.

Neuralynx USA In vivo extracellular
recording systems

NCS, NSE,
NEV, etc.

ASCII headers + binary. Readers avail-
able (MATLAB, Python). Supported
in Neo, can export to NWB.

Ripple Neuro USA High-channel neural
recording & stimulation
systems (BCI, clinical)

Similar to
Blackrock: NSx
/ NEV

MATLAB/Python SDK. Actively sup-
ports NWB.

Tucker-Davis
Technologies
(TDT)

USA High-throughput record-
ing, optogenetics, stimu-
lation

.tsq / .tev / .sev Proprietary binary. TDT SDK + Neo
support. NWB export possible.

Intan Tech-
nologies

USA Low-power ampliិer
chips & headstages
(RHD, RHS series)

.rhd / .rhs Binary with header metadata. In-
tan provides readers (C++, MATLAB,
Python). Neo + NWB supported.
Widely used in open-source rigs.

ADInstru-
ments

New
Zealand

PowerLab DAQ,
LabChart software,
teaching/research physi-
ology tools

.adicht
(LabChart
ិles)

Proprietary but supported by LabChart
& APIs. Neo support available. Some
pipelines to NWB.

Kerr Scienti຃c
Instruments

New
Zealand

In vitro slice & tissue
electrophysiology rigs

Exports via
DAQ hard-
ware (often
LabChart, NI,
etc.)

Less standardized — depends on DAQ
choice (often integrates with ADIn-
struments).

12 Chapter 2. Electrophysiology data

Data Sciences and Spikes

2.4 Databases

By the way, data really matter! You can look at the Wikipedia list of neuroscience databases. We will consider four
of them.

2.4.1 NLM Dataset Catalog

NLMDataset Catalog is a catalog of biomedical datasets from various repositories, NIHNational Library ofMedecine
(NIH/NLM).

• The NLM Dataset Catalog is essentially a registry pointing to datasets, not a direct host.

• You’ll usually get redirected to the actual host (sometimes PhysioNet, OpenNeuro, or institutional repositories).

• If the dataset is downloadable via URL, you can use requests or wget in Python to fetch the .abf ិles, then
open with pyabf.

• No standard Python API for the catalog itself, but you can scrape metadata via their JSON endpoints (if
provided per dataset).

2.4.2 Dryad

Dryad (DAta Archive for Neuroscience DIscovery) is an open data publishing platform and a community committed
to the open availability and routine re-use of all research data.

• Dryad datasets are hosted at datadryad.org.

• They expose a REST API (https://datadryad.org/api/v2/).

• You can query a DOI, get ិle download links, and then download with requests.

Examples of data sets:

• a dataset presenting electrophysiological properties from whole-cell patch clamped nucleus accumbens core
medium spiny neurons from male rats and female rats recorded in diាerent estrous cycle phases.

• a dataset containing whole-cell electrophysiological recordings (patch-clamp recordings) from three cell types
in mice.

Example of usage:

import requests

import pyabf

doi = "10.5061/dryad.xxxxx" # replace with dataset DOI

r = requests.get(f"https://datadryad.org/api/v2/datasets/{doi}")
files = r.json()["included"]
for f in files:

if f["attributes"]["filename"].endswith(".abf"):
url = f["attributes"]["downloadUrl"]
abf_data = requests.get(url)
with open(f["attributes"]["filename"], "wb") as fh:

fh.write(abf_data.content)
abf = pyabf.ABF(f["attributes"]["filename"])

2.4. Databases 13

https://en.wikipedia.org/wiki/List_of_neuroscience_databases
https://datasetcatalog.nlm.nih.gov
https://datadryad.org/about
https://datadryad.org/api/v2/
https://datadryad.org/dataset/doi:10.5061/dryad.k0p2ngfgm
https://datadryad.org/dataset/doi:10.5061/dryad.66t1g1k2w

Data Sciences and Spikes

2.4.3 Dandi Archive

Dandi Archive (Distributed Archive for Neuroscience Data Integration) is the BRAIN Initiative archive for publishing
and sharing neurophysiology data including electrophysiology, optophysiology, and behavioral time-series, and images
from immunostaining experiments.

• DANDI hosts primarily neurophysiology data in NWB (Neurodata Without Borders) format (link, not ABF.

• They have a Python client: dandi (link).

An example of data set:

• Patch-seq recordings from mouse visual cortex. Whole-cell Patch-seq recordings from neurons of the mouse
visual cortex from the Allen Institute for Brain Science, released in June 2020. The majority of cells in this
dataset are GABAergic interneurons, but there are also a small number of glutamatergic neurons from layer
2/3 of the mouse visual cortex.

Example of usage:

pip install dandi
dandi download DANDI:000003 # replace with dataset identifier

If the dataset includes .abf ិles (rare, usually NWB), you can load them directly with pyabf. More commonly,
you’d work with NWB using pynwb, not pyabf.

2.4.4 Zenodo

zenodo.org (named after Zenodotus, the ិrst librarian of Alexandria) is an open-access research data repository
built and hosted by CERN (the European Organization for Nuclear Research), with support from the European
Commission.

• Zenodo provides a REST API: https://zenodo.org/api/.

• Each record has a DOI and you can list associated ិles.

Example of data sets:

• a data set of CA1 pyramidal cell recordings using an intact whole hippocampus preparation, including record-
ings of rebound ិring (V2).

Example:

import requests

import pyabf

record_id = "1234567" # Zenodo record ID

r = requests.get(f"https://zenodo.org/api/records/{record_id}")
for f in r.json()["files"]:

if f["key"].endswith(".abf"):
url = f["links"]["self"]
abf_data = requests.get(url)
with open(f["key"], "wb") as fh:

fh.write(abf_data.content)
abf = pyabf.ABF(f["key"])

14 Chapter 2. Electrophysiology data

https://dandiarchive.org
https://docs.dandiarchive.org/user-guide-sharing/converting-data/
https://pypi.org/project/dandi/
https://dandiarchive.org/dandiset/000020/0.210913.1639
https://zenodo.org
https://zenodo.org/api/
https://zenodo.org/records/17794

Data Sciences and Spikes

2.5 Gateways with Python

Formats commonly used in electrophysiology (ABF, NBW, IBW) are not always straightforward to handle. Fortu-
nately, several Python libraries act as gateways to read and convert:

• PyNWB is a Python package for working with NWB ិles (doc github).

• pyabf is a Python library for reading electrophysiology data from Axon Binary Format (ABF) ិles (github),
see also abf explorer, a simple graphical application for quickly viewing axon binary format (ABF).

• IBW (Igor Binary Wave) is a Python parser for IBW (.ibw) and Packed Experiment (.pxp) ិles written by
WaveMetrics’ IGOR Pro software (see igor2). IBW is a bit less active in Python.

As we already had a quick peep at above, several Python tools are available for working with records from these
databases, see Chapter Exploring records with pyabf for more details. Also in Chapter Exploring a database with csv
we present some tools and ideas to explore a database.

2.5. Gateways with Python 15

https://pynwb.readthedocs.io/en/stable/
https://github.com/NeurodataWithoutBorders
https://github.com/swharden/pyABF
https://github.com/nkicg6/ABF_Explorer
https://github.com/AFM-analysis/igor2

Data Sciences and Spikes

16 Chapter 2. Electrophysiology data

CHAPTER

THREE

EXPLORING A DATABASE WITH CSV

Important

Usually, directories of experimental records are produced by colleagues in the lab. It is essential that there is
ongoing discussion between the experimentalists and the people who will later analyze the data, such as data
scientists. If data scientists modify the structure of the records directory, it becomes much harder to maintain
this communication and can signiិcantly slow down the process of data exploitation and analysis. Therefore,
following good practices for organizing and managing the data is crucial.

See Section “csv in the context of panda and csvkit” for an introduction to csv in the context with panda and
csvkit.

3.1 Building a csvਡle

We consider a dataset in data/records_fake.

This dataset consists of a set of (empty) records compiled in 2024, fromMarch 15 to June 26, by Joanna Danielewicz
at the Mathematical, Computational and Experimental lab, headed by Seraិm Rodrigues at BCAM.

The directory structure is the same as in the real dataset, but the ិles are empty, since the original recordings are too
large. Later, we will work with selected real recordings.

In the data directory I have a subdirectory records_fake that contains empty abf and atf ិles, the structure
is:

!tree -L 2 data/data_bcam_2024/records

data/data_bcam_2024/records
├── 03.15
│ ├── C1
│ └── C2
├── 03.20
│ └── C1
├── 04.10
│ ├── C1
│ ├── C2\ immature
│ └── C3
├── 05.07
│ ├── C1\ DG
│ └── C2\ DG
├── 05.20
│ ├── C1
│ ├── C2
│ ├── C3
│ ├── C4

(continues on next page)

17

https://www.linkedin.com/in/joanna-danielewicz-522139b6/?originalSubdomain=es
https://www.bcamath.org/en/research/areas/m3a/mcen
https://www.ikerbasque.net/es/serafim-rodrigues
https://www.bcamath.org/en

Data Sciences and Spikes

(continued from previous page)

│ └── C5
├── 05.23
│ ├── C1
│ ├── C2
│ ├── C3
│ └── C4
├── 05.29
│ ├── C1
│ ├── C2
│ └── C3\ immature
├── 05.30
│ ├── C1
│ └── C2
├── 06.19
│ ├── C1
│ └── C2
├── 06.26
│ ├── C1
│ ├── C2
│ └── C3
└── README.md

37 directories, 1 file

First we present somes good practices about records directory.

3.2 Good practrices about records directory

3.2.1 Directory structure: ਢatten or not?

• Keep the hierarchy (date → cell → ិles).

• It mirrors the experimental workីow (date of recording, then cell).

• Easier to reason about provenance (“what did we do on May 30?”).

• Helps you separate sessions and avoid accidental ិlename collisions.

• Flattening could be useful for scripts, but you can always create virtual ីattening in Python (e.g., by walking
the directory tree). So I’d keep the hierarchy and let code do the ីattening.

Recommendation: Keep the directory hierarchy. Use scripts to index/ីatten when needed.

3.2.2 Metadata handling

• Do not rely only on ិlenames — they’re fragile and inconsistent.

• Best practice: keep a metadata table (CSV, TSV, JSON, YAML, or SQLite DB), eg. a metadata.csv
to store all experiment details.

– You can add or correct metadata later without touching raw ិles.

– Easy to query and ិlter in Python (e.g., with pandas).

– Prevents the need to rename ិles whenever metadata changes.

Recommendation: Maintain a single central metadata ិle (CSV for simplicity, or SQLite if the dataset grows large).

18 Chapter 3. Exploring a database with csv

Data Sciences and Spikes

3.2.3 README.md

Add a README.md in the data ិle that includes:

• Directory structure

• Naming conventions

• Protocol/temperature shorthand

• Instructions for using metadata

3.2.4 File Naming

• Keep original ិlenames from acquisition (ground truth).

• Do not overwrite raw ិles.

• If you want clean names, create symbolic links or derived copies like: cellID_date_protocol.abf,
eg. you can make a (ីat) dir of symbolic links:

symlinks/
├── C21_05.30.abf
├── C22_05.30.abf
├── C23_06.19.abf

3.2.5 Keep raw data read-only

• Protects raw data integrity → accidental edits, renames, or deletions won’t happen.

• Clear separation between:

– Raw data (immutable, read-only)

– Derived data / analysis results (reproducible, regeneratable)

• Works well with the principle: “never touch your raw data, always derive.”

• Inmulti-user setups (lab server, shared cluster), permissions protect against colleagues accidentally overwriting.

Things to keep in mind

• You may still want to add new ិles (new experiments) → so you don’t want to lock the whole records root
permanently. Instead, set read-only permissions per experiment once it’s ិnalized.

• If you ever need to move or reorganize, you’ll have to re-enable write permissions (chmod u+w).

• A safer alternative:

– Keep raw records as read-only

– Mirror it to a version-controlled metadata database (metadata.csv or SQLite), which you can edit freely

3.3 Back to the case study

To make everything in ‘data/records_fake/’ read-only:

!chmod -R a-w data/data_bcam_2024/records
!ls -l data/data_bcam_2024/records/*/*/* | head -n 5

3.3. Back to the case study 19

Data Sciences and Spikes

-r--r--r-- 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
↪C1/2024_03_15_0000 IC steps 23.abf

-r--r--r-- 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
↪C1/2024_03_15_0001 IC ramp 23.abf

-r--r--r-- 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
↪C1/2024_03_15_0002 IC sin 23.abf

-r--r--r-- 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
↪C1/2024_03_15_0003 VC ramp 23.abf

-r--r--r-- 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
↪C1/2024_03_15_0004 IC ramp 25.abf

ls: stdout: Undefined error: 0

Now everybody (owner, group, all) car read the ិles but cannot write (or execute), ិles can still be read and copied.
Still under MacOS with Finder you can make some damages, you can make them immutable:

!chflags -R uchg data/data_bcam_2024/records

Note the little lockers in Finder:

(To undo: chflags -R nouchg records)

Tip

Best practices

• Keep raw data untouched.

• Keep raw data read-only once experiments are ិnalized.

• Track metadata in metadata.csv — symlinks are just for easier ិle access, not metadata storage.

• If necessary, use symlinks for convenience (clean naming, ីat access).

3.4 Pandas DataFrame

pandas DataFrame (df) is far better than built-in Python tools like lists, dictionaries, or arrays for the following
reasons:

• Tabular structure built-in

– A DataFrame behaves like a table or spreadsheet: rows = records, columns = ិelds.

– You don’t have to manually manage parallel lists or nested dictionaries.

• Easy indexing and ិltering: doing the same with lists/dicts would require loops and conditionals —much more
verbose

• Powerful aggregation & grouping: compute counts, averages, sums, or custom statistics without writing loops

20 Chapter 3. Exploring a database with csv

Data Sciences and Spikes

• Built-in handling of missing data

– Pandas understands NaN values automatically.

– Built-in functions handle missing data gracefully.

• Integration with plotting and analysis

• Easy I/O; Load/save CSV, Excel, SQL, JSON, and more with a single command.

See infra.

3.5 Back to the case study: the boring job !

This part is as necessary as it is boring ! From directory data/data_bcam_2024/records (which we
will not modify), we generate a metadata ិle ddata/data_bcam_2024/records_metadata.csv in CSV
format. The procedure is somewhat tricky and was developed step by step with the help of ChatGPT.

The ិnal python script (not very informative) is data/data_bcam_2024/create_metadata.py.

!cd data/data_bcam_2024 && python3 create_metadata.py
metadata_file = "data/data_bcam_2024/records_metadata_clean.csv"

Step 1: columns cell_id, file_path, file_name
Step 2: column date
Step 3: column exp_nb
Step 4: column comments
Step 5: column protocol
Step 6: column prot-opt
Step 7: column tp

Step 8: refine comments
Step 9: separate bad records
Final CSV saved to :

records_metadata.csv that contains references to all records
records_metadata_clean.csv that contains references to all clean records
records_metadata_bad.csv that contains references to all bad records
records_metadata.csv = records_metadata_clean.csv + records_metadata_bad.csv

import pandas as pd

df = pd.read_csv(metadata_file) # load the metadata

df.head(1000) # display the first few rows

exp_nb cell_id date protocol prot-opt tp comments \
0 1 C1 2024-03-15 IC steps 23.0 NaN
1 2 C1 2024-03-15 IC ramp 23.0 NaN
2 3 C1 2024-03-15 IC sin 23.0 NaN
3 4 C1 2024-03-15 VC ramp 23.0 NaN
4 5 C1 2024-03-15 IC ramp 25.0 NaN
..
639 655 C27 2024-06-26 IC ramp 34.0 NaN
640 656 C27 2024-06-26 IC sin 34.0 NaN
641 657 C27 2024-06-26 VC ramp 34.0 NaN
642 658 C27 2024-06-26 IC ramp 37.0 NaN
643 659 C27 2024-06-26 VC ramp 37.0 NaN

file_path file_name
0 03.15/C1/2024_03_15_0000 IC steps 23.abf 2024_03_15_0000 IC steps 23.abf
1 03.15/C1/2024_03_15_0001 IC ramp 23.abf 2024_03_15_0001 IC ramp 23.abf
2 03.15/C1/2024_03_15_0002 IC sin 23.abf 2024_03_15_0002 IC sin 23.abf
3 03.15/C1/2024_03_15_0003 VC ramp 23.abf 2024_03_15_0003 VC ramp 23.abf

(continues on next page)

3.5. Back to the case study: the boring job ! 21

Data Sciences and Spikes

(continued from previous page)

4 03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf
..
639 06.26/C3/2024_06_26_0044 IC ramp 34.abf 2024_06_26_0044 IC ramp 34.abf
640 06.26/C3/2024_06_26_0045 IC sin 34.abf 2024_06_26_0045 IC sin 34.abf
641 06.26/C3/2024_06_26_0046 VC ramp 34.abf 2024_06_26_0046 VC ramp 34.abf
642 06.26/C3/2024_06_26_0047 IC ramp 37.abf 2024_06_26_0047 IC ramp 37.abf
643 06.26/C3/2024_06_26_0048 VC ramp 37.abf 2024_06_26_0048 VC ramp 37.abf

[644 rows x 9 columns]

We end up with:

• a complete consolidated CSV (records_metadata.csv) with all metadata columns for downstream anal-
ysis

• the subset of “clean” records references (records_metadata_clean.csv)

• the subset of “bad” records references (records_metadata_bad.csv)

and records_metadata.csv = records_metadata_clean.csv ∪ records_metadata_bad.
csv

3.6 Exploring the metadata

3.7 First we read the csv and create a dataframe object:

The .info() method prints a concise summary of the DataFrame. Here’s what it shows:

• Index range → e.g. RangeIndex: 100 entries, 0 to 99

• Number of columns and their names

• Column data types (e.g. int64, ីoat64, object for strings, datetime64, etc.)

• Number of non-null values per column (useful for spotting missing data)

• Memory usage of the DataFrame

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 644 entries, 0 to 643
Data columns (total 9 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 exp_nb 644 non-null int64
1 cell_id 644 non-null object
2 date 644 non-null object
3 protocol 372 non-null object
4 prot-opt 344 non-null object
5 tp 635 non-null float64
6 comments 19 non-null object
7 file_path 644 non-null object
8 file_name 644 non-null object

dtypes: float64(1), int64(1), object(7)
memory usage: 45.4+ KB

import pandas as pd

Load the metadata

(continues on next page)

22 Chapter 3. Exploring a database with csv

Data Sciences and Spikes

(continued from previous page)

df = pd.read_csv(metadata_file)
Display the first few rows

df.head()

exp_nb cell_id date protocol prot-opt tp comments \
0 1 C1 2024-03-15 IC steps 23.0 NaN
1 2 C1 2024-03-15 IC ramp 23.0 NaN
2 3 C1 2024-03-15 IC sin 23.0 NaN
3 4 C1 2024-03-15 VC ramp 23.0 NaN
4 5 C1 2024-03-15 IC ramp 25.0 NaN

file_path file_name
0 03.15/C1/2024_03_15_0000 IC steps 23.abf 2024_03_15_0000 IC steps 23.abf
1 03.15/C1/2024_03_15_0001 IC ramp 23.abf 2024_03_15_0001 IC ramp 23.abf
2 03.15/C1/2024_03_15_0002 IC sin 23.abf 2024_03_15_0002 IC sin 23.abf
3 03.15/C1/2024_03_15_0003 VC ramp 23.abf 2024_03_15_0003 VC ramp 23.abf
4 03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf

Show unique protocols nicely

print("Unique protocols:", df['protocol'].unique())
Count files per protocol

protocol_counts = df['protocol'].value_counts()
print("\nFiles per protocol:")
print(protocol_counts.to_string())
Count files per day

day_counts = df['date'].value_counts()
print("\nFiles per day:")
print(day_counts.to_string())

Unique protocols: ['IC' 'VC' 'DC' nan]

Files per protocol:
protocol
IC 213
VC 130
DC 29

Files per day:
date
2024-05-23 126
2024-05-20 96
2024-05-07 70
2024-05-30 68
2024-03-15 67
2024-05-29 63
2024-04-10 61
2024-06-26 49
2024-06-19 24
2024-03-20 20

We can also use pandas styling (works in Jupyter Notebook):

Count files per protocol

df['protocol'].value_counts().sort_index().to_frame().style.set_caption("Files␣
↪per Protocol").format("{:.0f}")

<pandas.io.formats.style.Styler at 0x128772f50>

Count files per day

(continues on next page)

3.7. First we read the csv and create a dataframe object: 23

Data Sciences and Spikes

(continued from previous page)

df['date'].value_counts().sort_index().to_frame().style.set_caption("Files per Day
↪").format("{:.0f}")

<pandas.io.formats.style.Styler at 0x128783a10>

Now we propose a snippet that generates two side-by-side bar charts from the df dataframe: The result is a quick
visual summary of how your dataset is distributed by protocol type and by date. Do you want me to show you how
to make the x-axis labels more readable (e.g. rotating dates so they don’t overlap)?

import matplotlib.pyplot as plt

Create subplots: 1 row, 2 columns

fig, axes = plt.subplots(1, 2, figsize=(12, 5)) # adjust figsize as needed

Files per protocol

protocol_counts = df['protocol'].value_counts()
protocol_counts.plot(

kind='bar',
color='skyblue',
edgecolor='black',
ax=axes[0],
title='Files per Protocol'

)
axes[0].set_ylabel('Number of files')

Files per day

day_counts = df['date'].value_counts().sort_index()
day_counts.plot(

kind='bar',
color='lightgreen',
edgecolor='black',
ax=axes[1],
title='Files per Day'

)
axes[1].set_ylabel('Number of files')

plt.tight_layout()
plt.show()

24 Chapter 3. Exploring a database with csv

Data Sciences and Spikes

3.8 Filtering

3.8.1 All dead cells experiments

Filter rows where comments contain 'dead' (case-insensitive)

dead_cells = df[df['comments'].str.contains('dead', case=False, na=False)]

Display the result

dead_cells

exp_nb cell_id date protocol prot-opt tp comments \
66 67 C2 2024-03-15 IC ramp 38.0 dead
627 643 C26 2024-06-26 DC NaN 25.0 dead

file_path \
66 03.15/C2/2024_03_15_0066 IC ramp 38 dead.abf
627 06.26/C2/2024_06_26_0032 25 DC dead.abf

file_name
66 2024_03_15_0066 IC ramp 38 dead.abf
627 2024_06_26_0032 25 DC dead.abf

3.8.2 All experiment of the day ‘2024-05-29’

Filter rows for a specific day

day_data = df[df['date'] == '2024-05-29']

Display the result

day_data

exp_nb cell_id date protocol prot-opt tp comments \
440 449 C18 2024-05-29 IC ramp 25.0 NaN
441 450 C18 2024-05-29 IC ramp 28.0 NaN
442 451 C18 2024-05-29 IC ramp 31.0 NaN
443 452 C18 2024-05-29 IC ramp 34.0 NaN
444 453 C18 2024-05-29 IC ramp 37.0 NaN
..
498 507 C19 2024-05-29 NaN NaN 32.0 NaN
499 508 C20 2024-05-29 NaN NaN 33.0 immature
500 509 C20 2024-05-29 NaN NaN 34.0 immature
501 510 C20 2024-05-29 NaN NaN 35.0 immature
502 511 C20 2024-05-29 NaN NaN 36.0 immature

file_path file_name
440 05.29/C1/05.29 C1 IC ramp 25.atf 05.29 C1 IC ramp 25.atf
441 05.29/C1/05.29 C1 IC ramp 28.atf 05.29 C1 IC ramp 28.atf
442 05.29/C1/05.29 C1 IC ramp 31.atf 05.29 C1 IC ramp 31.atf
443 05.29/C1/05.29 C1 IC ramp 34.atf 05.29 C1 IC ramp 34.atf
444 05.29/C1/05.29 C1 IC ramp 37.atf 05.29 C1 IC ramp 37.atf
..
498 05.29/C2/2024_05_29_0032.abf 2024_05_29_0032.abf
499 05.29/C3 immature/2024_05_29_0033.abf 2024_05_29_0033.abf
500 05.29/C3 immature/2024_05_29_0034.abf 2024_05_29_0034.abf
501 05.29/C3 immature/2024_05_29_0035.abf 2024_05_29_0035.abf
502 05.29/C3 immature/2024_05_29_0036.abf 2024_05_29_0036.abf

[63 rows x 9 columns]

3.8. Filtering 25

Data Sciences and Spikes

3.8.3 All IC ramp

Filter rows with protocol 'IC' and protocol_option 'ramp'

ic_ramp_cells = df[(df['protocol'] == 'IC') & (df['prot-opt'] == 'ramp')]

Display the result

ic_ramp_cells

exp_nb cell_id date protocol prot-opt tp comments \
1 2 C1 2024-03-15 IC ramp 23.0 NaN
4 5 C1 2024-03-15 IC ramp 25.0 NaN
7 8 C1 2024-03-15 IC ramp 27.0 NaN
10 11 C1 2024-03-15 IC ramp 29.0 NaN
13 14 C1 2024-03-15 IC ramp 31.0 NaN
..
629 645 C27 2024-06-26 IC ramp 25.0 NaN
634 650 C27 2024-06-26 IC ramp 28.0 NaN
636 652 C27 2024-06-26 IC ramp 31.0 NaN
639 655 C27 2024-06-26 IC ramp 34.0 NaN
642 658 C27 2024-06-26 IC ramp 37.0 NaN

file_path file_name
1 03.15/C1/2024_03_15_0001 IC ramp 23.abf 2024_03_15_0001 IC ramp 23.abf
4 03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf
7 03.15/C1/2024_03_15_0007 IC ramp 27.abf 2024_03_15_0007 IC ramp 27.abf
10 03.15/C1/2024_03_15_0010 IC ramp 29.abf 2024_03_15_0010 IC ramp 29.abf
13 03.15/C1/2024_03_15_0013 IC ramp 31.abf 2024_03_15_0013 IC ramp 31.abf
..
629 06.26/C3/2024_06_26_0034 IC ramp 25.abf 2024_06_26_0034 IC ramp 25.abf
634 06.26/C3/2024_06_26_0039 IC ramp 28.abf 2024_06_26_0039 IC ramp 28.abf
636 06.26/C3/2024_06_26_0041 IC ramp 31.abf 2024_06_26_0041 IC ramp 31.abf
639 06.26/C3/2024_06_26_0044 IC ramp 34.abf 2024_06_26_0044 IC ramp 34.abf
642 06.26/C3/2024_06_26_0047 IC ramp 37.abf 2024_06_26_0047 IC ramp 37.abf

[136 rows x 9 columns]

3.9 csvkit the command-line Swiss Army knife

OK, notebooks are great, but when navigating through data directories, you may come across a CSV ិle—or, if you’re
less lucky, an Excel ិle. Don’t panic: there’s a handy tool for that: csvkit, it is a (nice) suite of command-line tools
for converting to and working with CSV, the king of tabular ិle formats. See Section “csvkit the command-line Swiss
Army knife” and/or the tutorial.

Look at column names:

!csvcut -n data/data_bcam_2024/records_metadata_clean.csv

1: exp_nb
2: cell_id
3: date
4: protocol
5: prot-opt
6: tp
7: comments
8: file_path
9: file_name

Pretty print of the (head of) columns 2,3,8:

26 Chapter 3. Exploring a database with csv

https://csvkit.readthedocs.io/en/latest/
https://csvkit.readthedocs.io/en/latest/tutorial.html

Data Sciences and Spikes

!csvcut -c 2,3,8 data/data_bcam_2024/records_metadata_clean.csv | csvlook | head

cell_id	date	file_path
C1	2024-03-15	03.15/C1/2024_03_15_0000 IC steps 23.abf
C1	2024-03-15	03.15/C1/2024_03_15_0001 IC ramp 23.abf
C1	2024-03-15	03.15/C1/2024_03_15_0002 IC sin 23.abf
C1	2024-03-15	03.15/C1/2024_03_15_0003 VC ramp 23.abf
C1	2024-03-15	03.15/C1/2024_03_15_0004 IC ramp 25.abf
C1	2024-03-15	03.15/C1/2024_03_15_0005 IC sin 25.abf
C1	2024-03-15	03.15/C1/2024_03_15_0006 VC ramp 25.abf
C1	2024-03-15	03.15/C1/2024_03_15_0007 IC ramp 27.abf

Stats on “date” and “tp:

!csvcut -c date,tp data/data_bcam_2024/records_metadata_clean.csv | csvstat

1. "date"

Type of data: Date
Contains null values: False
Non-null values: 644
Unique values: 10
Smallest value: 2024-03-15
Largest value: 2024-06-26
Most common values: 2024-05-23 (126x)

2024-05-20 (96x)
2024-05-07 (70x)
2024-05-30 (68x)
2024-03-15 (67x)

2. "tp"

Type of data: Number
Contains null values: True (excluded from calculations)
Non-null values: 635
Unique values: 73
Smallest value: 0,
Largest value: 69,
Sum: 18 044,5
Mean: 28,417
Median: 28,
StDev: 12,181
Most decimal places: 1
Most common values: 25, (96x)

34, (66x)
31, (50x)
28, (45x)
40, (33x)

Row count: 644

Show a nice table of all ិles where “prot-opt” is steps, including only the “cell_id”, “protocol”, “prot-opt”, and
“ិle_name” columns:

!csvcut -c cell_id,protocol,prot-opt,file_name data/data_bcam_2024/records_
↪metadata_clean.csv | csvgrep -c prot-opt -m steps | csvlook

cell_id	protocol	prot-opt	file_name
C1	IC	steps	2024_03_15_0000 IC steps 23.abf

(continues on next page)

3.9. csvkit the command-line Swiss Army knife 27

Data Sciences and Spikes

(continued from previous page)

C1	IC	steps	2024_03_15_0018 IC steps 34.abf
C2	IC	steps	2024_03_15_0036 IC steps 23.abf
C3	IC	steps	2024_03_20_0007 IC square steps 38.abf
C23	IC	steps	2024_06_19_0000 IC steps 25.abf
C23	IC	steps	2024_06_19_0009 IC steps 34.abf
C24	IC	steps	2024_06_19_0014 IC steps 25.abf
C25	IC	steps	2024_06_26_0000 IC steps 25.abf
C25	IC	steps	2024_06_26_0016 IC steps 34.abf
C25	IC	steps	2024_06_26_0022 IC steps 40.abf
C26	IC	steps	2024_06_26_0028 IC steps 25.abf
C27	IC	steps	2024_06_26_0033 IC steps 25.abf
C27	IC	steps	2024_06_26_0043 IC steps 34.abf

You can pipe all the line commands. For example, get cell_id and ិle_name for all IC steps:

!bash -c "csvgrep -c protocol -m IC data/data_bcam_2024/records_metadata_clean.
↪csv \

| csvgrep -c prot-opt -m steps \
| csvcut -c cell_id,file_name \
| csvlook"

cell_id	file_name
C1	2024_03_15_0000 IC steps 23.abf
C1	2024_03_15_0018 IC steps 34.abf
C2	2024_03_15_0036 IC steps 23.abf
C3	2024_03_20_0007 IC square steps 38.abf
C23	2024_06_19_0000 IC steps 25.abf
C23	2024_06_19_0009 IC steps 34.abf
C24	2024_06_19_0014 IC steps 25.abf
C25	2024_06_26_0000 IC steps 25.abf
C25	2024_06_26_0016 IC steps 34.abf
C25	2024_06_26_0022 IC steps 40.abf
C26	2024_06_26_0028 IC steps 25.abf
C27	2024_06_26_0033 IC steps 25.abf
C27	2024_06_26_0043 IC steps 34.abf

(bash -c is a way to tell Bash to execute a command string as if you typed it directly in a terminal)

28 Chapter 3. Exploring a database with csv

CHAPTER

FOUR

EXPLORING RECORDS WITH PYABF

4.1 Using External Python Packages

We assume that the correct Python environment is already set up; see Section “Setting Up the Conda Virtual Environ-
ment for This Project” for details.

Let’s import the external libraries needed to work with the notebook:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import matplotlib as mpl

import seaborn as sns

import pyabf

print(f"numpy: {np.__version__}")
print(f"matplotlib: {matplotlib.__version__}")
print(f"seaborn: {sns.__version__}")
print(f"pyabf: {pyabf.__version__}")

numpy: 1.26.4
matplotlib: 3.8.4
seaborn: 0.12.2
pyabf: 2.3.8

4.2 pyABF on the net

The pyABF library was created by Scott Harden. Scott Harden has made pyABF available as an open-source library,
aiming to simplify the process of working with ABF ិles in Python, making it easier for researchers to analyze and
visualize their data. You can ិnd more about pyABF and its documentation on his website:

• a (good) tutorial by [Scott W Harden]

• pyABF - A simple Python interface for Axon Binary Format ABF ិles, with git repository

• in Python Package Index pypi

29

https://pypi.org/project/pyabf/
https://swharden.com/about/
https://swharden.com/pyabf/tutorial/
https://swharden.com/pyabf/
https://github.com/swharden/pyABF
https://pypi.org/project/pyabf/

Data Sciences and Spikes

4.3 Exploring abf ਡles

This ិrst notebook aims to demonstrate how to analyze electrophysiological recordings from a single cell by:

• Extracting basic characteristics of the recorded signals.

• Plotting, for each recording trial (sweep, see below), the evolution of the membrane potential (voltage) and, if
applicable, the injected current.

We consider abf ិles contained in the data directory data/data_patch_clamp_bcam/records:

from pathlib import Path
records_dir = Path("data/data_patch_clamp_bcam/records")
abf_files = list(records_dir.rglob("*.abf")) # recursive glob

print("the directory ", records_dir, " contains ", len(abf_files)," abf files")

the directory data/data_patch_clamp_bcam/records contains 63 abf files

We focus on speciិc records:

file_path = "data/data_patch_clamp_bcam/records/2024_06/06.26/C2/2024_06_26_0028.
↪abf"

4.3.1 abf ਡles and pyabf library

ABF File Overview

An ABF (Axon Binary Format) ិle is a proprietary ិle format developed by Axon Instruments (now part of Molec-
ular Devices) to store electrophysiological data from experiments. ABF ិles are commonly used to save data from
experiments like patch-clamp recordings, where researchers measure electrical signals from biological systems (such
as neurons or muscle cells). These ិles can store a variety of information, including:

• Data Traces: Time series data for one or more channels, representing signals such as voltage or current.

• Metadata: Information about the experiment, including settings for the recording, such as sampling rate, ex-
periment type, and device conិguration.

• Multiple Sweeps: An ABF ិle can contain multiple sweeps (individual trials or experimental runs), which may
diាer in parameters or conditions.

The ABF format is binary, making it eឹcient for large datasets, but it is not easily readable without specialized
software or libraries.

4.3.2 pyabf Library

The pyabf library is a Python package designed to facilitate working with ABF ិles. It provides an easy-to-use
interface to read and manipulate data stored in ABF ិles. The library makes it simpler for researchers to extract
relevant information from ABF ិles, without having to manually parse the binary data.

Key Features of pyabf:

1. Load ABF Files: Load an ABF ិle into memory and provide access to its data.

2. Access Data Traces: Extract time-series data, such as voltage and current traces (from ADC channels).

3. Multiple Sweep Support: Handle multiple sweeps (individual experimental runs) within a single ABF ិle.

4. Extract Metadata: Retrieve metadata like channel names, experiment parameters, and other settings.

5. Sweep Navigation: Select and navigate through multiple sweeps (trials) and analyze their data individually.

Common Functions in pyabf:

30 Chapter 4. Exploring records with pyabf

Data Sciences and Spikes

• ABF(file_path): Initializes an ABF object from a given ិle path, loading the data into memory.

• setSweep(sweep_index): Selects a speciិc sweep (experimental run) by its index.

• sweepY: Extracts the voltage (or other signal) data for the current sweep.

• sweepX: Extracts the time vector for the current sweep.

• sweepC: Extracts the command input (if available) for the current sweep.

• adcNames: List of ADC channel names.

• dacNames: List of DAC channel names.

4.3.3 Basics about abf objects

Where we import the pyabf package and load a record ិle:

abf = pyabf.ABF(file_path) # we load it

print(abf) # record characteristics

ABF (v2.9) with 2 channels (mV, pA), sampled at 10.0 kHz, containing 14 sweeps,␣
↪having no tags, with a total length of 2.35 minutes, recorded with protocol
↪"IV-DG".

Here abf = pyabf.ABF(file_path) creates an abf object that have:

• attributes: data stored in the object, and

• methods: functions that belong to an object and can be called to perform actions

Atributes

We can print more attributes:

print(f"{'File Path:':>20} {abf.abfFilePath}")
print(f"{'File Version:':>20} {abf.abfVersionString}")
print(f"{'Sampling Rate:':>20} {abf.dataRate} Hz")
print(f"{'Total Sweeps:':>20} {abf.sweepCount}")
print(f"{'ADC Channels:':>20} {abf.adcNames}")
print(f"{'DAC Channels:':>20} {abf.dacNames}")
print(f"{'Channel Units:':>20} {abf.sweepUnitsY}")
print(f"{'Experiment Date:':>20} {abf.abfDateTime}")

File Path: /Users/campillo/Documents/0-git.nosync/data-science-spikes/
↪data/data_patch_clamp_bcam/records/2024_06/06.26/C2/2024_06_26_0028.abf

File Version: 2.9.0.0
Sampling Rate: 10000 Hz
Total Sweeps: 14
ADC Channels: ['IN 0', 'IN 1']
DAC Channels: ['OUT 0', 'OUT 1']

Channel Units: mV
Experiment Date: 2024-06-26 17:23:16.253000

4.3. Exploring abf ਡles 31

Data Sciences and Spikes

Methods

You can list all the methods of an abf object with print(abf.__dict__).

methods = [method for method in dir(abf) if callable(getattr(abf, method)) and␣
↪not method.startswith("__")]

print("\n".join(methods))

_dtype
_getAdcNameAndUnits
_getDacNameAndUnits
_ide_helper
_loadAndScaleData
_makeAdditionalVariables
_readHeadersV1
_readHeadersV2
getAllXs
getAllYs
headerLaunch
launchInClampFit
saveABF1
setSweep
sweepD

You have private methods (Preិxed with _), and:

• getAllXs(): Returns all time points (X-values) for every sweep, useful for plotting.

• getAllYs(): Returns all recorded signal values (Y-values) for every sweep.

• headerLaunch(): Likely a utility function for debugging or inspecting header information.

• launchInClampFit(): Opens the ABF ិle in ClampFit, a software from Molecular Devices used for
electrophysiology data analysis.

• saveABF1(): Converts and saves the ABF ិle in version 1 format, which is older but sometimes required
for compatibility.

• setSweep(sweepIndex): Sets the current sweep (i.e., trial or recording segment) to a given index for
further processing.

• sweepD: Likely an attribute or method that provides the time duration of a sweep.

Of course the main parts of the sweep are the recorded signal and the command input:

Print voltage trace (recorded signal)

print(f"{'Voltage Trace (mV):':>25} {abf.sweepY}")

Print command input (if available)

print(f"{'Command Input (mV):':>25} {abf.sweepC}")

Voltage Trace (mV): [-65.4175 -65.4175 -65.4236 ... -64.6851 -64.6851 -64.
↪6851]

Command Input (mV): [0. 0. 0. ... 0. 0. 0.]

32 Chapter 4. Exploring records with pyabf

Data Sciences and Spikes

4.3.4 Basic abf ਡle exploration

Main abf attributes and methods

The abf object contains various attributes and methods that allow you to access metadata and data from the .abf ិle.
Here are some useful attributes and how to call them:

print("List of sweep indexes:", ", ".join(map(str, abf.sweepList)))

List of sweep indexes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

sweep_index = 0 # Choose a specific sweep (e.g., first sweep -> index 0)

abf.setSweep(sweep_index)

print(f"{'Voltage Trace (mV):':>25} {abf.sweepY}") # Print voltage trace␣
↪(recorded signal)

print(f"{'Command Input (mV):':>25} {abf.sweepC}") # Print command input (if␣
↪available)

print(f"{'Recorded Channels:':>25} {abf.adcNames}") # Check all available ADC␣
↪channels (recorded signals)

print(f"{'Command Channels:':>25} {abf.dacNames}") # Check DAC channels (command␣
↪input signals)

Voltage Trace (mV): [-65.4175 -65.4175 -65.4236 ... -64.6851 -64.6851 -64.
↪6851]

Command Input (mV): [0. 0. 0. ... 0. 0. 0.]
Recorded Channels: ['IN 0', 'IN 1']
Command Channels: ['OUT 0', 'OUT 1']

Some statistics of 1 sweep

Here, we have selected sweep_index = 0, representing the ិrst sweep in the ABF ិle. We then compute some
basic statistics of the corresponding voltage trace, such as the mean, median, min, max, standard deviation, and range
of the signal:

data = abf.sweepY # The voltage trace for the specific swwep

stats = {
"Mean (mV)": np.mean(data),
"Median (mV)": np.median(data),
"Min (mV)": np.min(data),
"Max (mV)": np.max(data),
"Std Dev (mV)": np.std(data),
"Range (mV)": np.ptp(data), # Max - Min

}

print("\nVoltage Trace Statistics:")
for key, value in stats.items():

print(f"{key:>20}: {value:.3f}")

Voltage Trace Statistics:
Mean (mV): -81.502

Median (mV): -91.797
Min (mV): -93.097
Max (mV): -64.545

Std Dev (mV): 12.916
Range (mV): 28.552

4.3. Exploring abf ਡles 33

Data Sciences and Spikes

4.4 Plots

4.4.1 Plotting the voltage trace distribution

%config InlineBackend.figure_format = 'retina'

this conិguration, known as the inline backend, helps achieve a balance between good visual quality and manageable
ិle size, see Section Jupyter backends.

to avoid warning from Seaborn internally calling a Pandas option

(mode.use_inf_as_na) that has been deprecated in pandas ≥ 2.1.

import warnings # needed for filterwarnings

warnings.filterwarnings("ignore", category=FutureWarning, module="seaborn")

mpl.rcParams['figure.figsize'] = (6, 3)

Create a figure with two subplots (1 row, 2 columns), sharing x-axis

fig, axes = plt.subplots(1, 2, sharex=True)

Plot histogram on the first subplot

axes[0].hist(data, bins=50, edgecolor='black', alpha=0.7)
axes[0].set_xlabel("Voltage (mV)")
axes[0].set_ylabel("Frequency")
axes[0].set_title("Voltage Trace Distribution")
axes[0].grid(True)

Plot KDE on the second subplot

sns.kdeplot(data, bw_adjust=0.3, fill=True, color="b", alpha=0.5, ax=axes[1])
axes[1].set_xlabel("Voltage (mV)")
axes[1].set_ylabel("Density")
axes[1].set_title("Voltage Trace Density")
axes[1].grid(True)

Adjust layout

plt.tight_layout()
plt.show()

34 Chapter 4. Exploring records with pyabf

Data Sciences and Spikes

4.4.2 Plotting one sweep with input current

color_adc = "C0"
color_dac = "C3"
my_lw = 0.8

mpl.rcParams['figure.figsize'] = (6, 4)

Create the figure

fig, ax1 = plt.subplots()

Plot the recorded curve (ADC) on the left axis

ax1.plot(abf.sweepX, abf.sweepY, color=color_adc, lw=my_lw, label="ADC waveform")
ax1.set_xlabel(abf.sweepLabelX)
ax1.set_ylabel(abf.sweepLabelY, color=color_adc)
ax1.tick_params(axis='y', labelcolor=color_adc)

Create a second y-axis for the control curve (DAC)

ax2 = ax1.twinx()
ax2.plot(abf.sweepX, abf.sweepC, color=color_dac, lw=my_lw,label="DAC waveform")
ax2.set_ylabel(abf.sweepLabelC, color=color_dac)
ax2.tick_params(axis='y', labelcolor=color_dac)

Improve the layout

fig.tight_layout()
plt.show()

let put that last plotting in a function plot_abf_sweep

from utils.plots import plot_abf_sweep

help(plot_abf_sweep) # help/info for the function plot_abf_sweep

Help on function plot_abf_sweep in module utils.plots:

plot_abf_sweep(abf, sweep=0, color_adc='C0', color_dac='C3', lw=0.8)
Plot a single sweep from an ABF file with ADC on the left y-axis
and DAC on the right y-axis.

Parameters:

(continues on next page)

4.4. Plots 35

Data Sciences and Spikes

(continued from previous page)

abf : pyabf.ABF
The ABF object.

sweep : int
Sweep number to plot (default 0).

color_adc : str
Color for the ADC waveform (default "C0").

color_dac : str
Color for the DAC waveform (default "C3").

lw : float
Line width (default 0.8).

plot_abf_sweep? gives the Signature of the function, so you can see the parameters and defaults, and the
Docstring of the function (ie., everything inside the “”” … “”” in the function)

4.4.3 Plotting all sweeps

plot every sweep (with vertical offset)

for sweepNumber in abf.sweepList:
abf.setSweep(sweepNumber)
offset = 140*sweepNumber
plt.plot(abf.sweepX, abf.sweepY+offset, color=color_adc, lw=my_lw)

decorate the plot

plt.gca().get_yaxis().set_visible(False) # hide Y axis

plt.xlabel(abf.sweepLabelX)
plt.show()

4.4.4 Plotting all sweeps with all inputs

We can improve the previous plot, see the python script utils/plots.py:

from utils.plots import plot_abf_traces_with_scalebar

fig, ax1, ax2 = plot_abf_traces_with_scalebar(abf)
plt.show()

36 Chapter 4. Exploring records with pyabf

Data Sciences and Spikes

Another possibility:

from utils.plots import plot_abf_sweeps_with_legend

fig, (ax1, ax2) = plot_abf_sweeps_with_legend(
abf, legend_loc='upper left', legend_bbox=(0.8, 0.87), legend_pad=0

)
plt.show()

4.4. Plots 37

Data Sciences and Spikes

38 Chapter 4. Exploring records with pyabf

Part II

Appendices

39

CHAPTER

FIVE

INSTALLING PYTHON AND SOME TOOLS

5.1 Main Python distributions for data sciences

When starting with Python for data science, it’s important to know the main distributions you can use. These distri-
butions include Python itself, plus tools to manage packages and environments. Here’s an overview that works across
macOS, Linux, and Windows.

5.1.1 System Python

• Many operating systems come with Python pre-installed:

– macOS and most Linux distributions include Python.

– Windows does not come with Python pre-installed (you need to download it from Python.org).

• Usually an older version (e.g., Python 3.8 or 3.9).

• Good for simple scripts, but installing additional packages may conីict with system tools.

5.1.2 Oਣcial Python from Python.org

• The oឹcial Python distribution is available at python.org.

• Works on macOS, Linux, and Windows.

• You can manually install any additional data science packages (e.g., numpy, pandas, matplotlib) using
pip.

• Lightweight and cross-platform, but you need to manage dependencies yourself.

5.1.3 Anaconda

• A full Python distribution for scienti຃c computing and data science.

• Includes:

– Python itself

– Hundreds of pre-installed libraries (numpy, pandas, matplotlib, scipy, etc.)

– Jupyter Notebook / JupyterLab

• Works on macOS, Linux, and Windows.

• Large download (~3 GB), but everything is ready-to-use.

• Good choice if you want a complete environment for data science without installing each library manually.

41

https://www.python.org/downloads/

Data Sciences and Spikes

5.1.4 Miniconda

• A minimal version of Anaconda, including only Python + the conda package manager.

• You install only the packages you need.

• Works on macOS, Linux, and Windows.

• Lightweight, ីexible, and suitable for reproducible environments.

• Often preferred for creating isolated Python environments per project.

5.1.5 Platform-Speciਡc Package Managers (optional)

• macOS: Homebrew can install Python (brew install python@3.13).

• Linux: System package managers like apt (Debian/Ubuntu) or dnf/yum (Fedora/CentOS) can install
Python.

• Windows: Chocolatey can install Python (choco install python) if you prefer command-line instal-
lation.

⚠ These install system-wide Python, not isolated environments, so careful with package conីicts.

� Mac users: Homebrew is a great tool to install system software on macOS, but it’s generally not recommended to
use brew-installed Python for data science projects. Why? Because brew installs Python system-wide, which can
conຄict with project-speci຃c environments like conda or venv. For isolated, reproducible Python environments,
preferMiniconda or Anaconda instead.

5.1.6 Summary Table

Distribution Platforms Main Feature Notes

System Python macOS/Linux Pre-installed Might be old; not isolated
Python.org ma-

cOS/Linux/Windows
Oឹcial Python Lightweight; manual package management

Anaconda ma-
cOS/Linux/Windows

Full scientiិc
stack

Large; ready-to-use

Miniconda ma-
cOS/Linux/Windows

Minimal + conda Lightweight; ីexible

Homebrew / apt / dnf /
Chocolatey

ma-
cOS/Linux/Windows

System package
manager

Installs Python and other software system-
wide; not isolated

This gives you a clear overview of themain Python distributions you can use for data science, regardless of your
operating system. Installation instructions and environment setup can be covered later.

Important

⇨We will therefore focus on the Anaconda solution

42 Chapter 5. Installing Python and some tools

Data Sciences and Spikes

5.2 Installing Anaconda and Miniconda

5.2.1 Installing Anaconda

macOS: Go to the Anaconda Downloads page, download the macOS installer (Graphical or command-line), open
the .pkg ិle, and follow the instructions. Open a terminal and verify the installation:

conda --version

Linux: Download the Linux installer from Anaconda Downloads. Open a terminal and run:

bash ~/Downloads/Anaconda3-<version>-Linux-x86_64.sh

Follow the prompts to complete the installation. Verify with:

conda --version

Windows: Download the Windows installer from Anaconda Downloads. Run the .exe ិle and follow the instruc-
tions. Open Anaconda Prompt or PowerShell and verify:

conda --version

5.2.2 Installing Miniconda

macOS: Go to the Miniconda Downloads page, download the macOS installer, open the .pkg ិle, and follow the
instructions. Open a terminal and verify:

conda --version

Linux: Download the Linux installer from Miniconda Downloads. Open a terminal and run:

bash ~/Downloads/Miniconda3-latest-Linux-x86_64.sh

Follow the prompts to complete the installation. Verify with:

conda --version

Windows: Download the Windows installer from Miniconda Downloads. Run the .exe ិle and follow the instruc-
tions. Open Anaconda Prompt or PowerShell and verify:

conda --version

5.2.3 Tips and Notes

• Optionally add conda to your PATH during installation to use it from any terminal.

• Update conda after installation:

conda update conda

• Miniconda is recommended for a lightweight setup.

• Usage of conda environments and package installation will be covered in later sections.

5.2. Installing Anaconda and Miniconda 43

https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Data Sciences and Spikes

5.2.4 Summary Table

Step macOS Linux Windows

Download
installer

Anaconda / Mini-
conda

Same Same

Run installer .pkg bash ~/Downloads/
installer.sh

.exe

Verify installa-
tion

conda
--version

conda --version conda --version

Notes Graphical or CLI in-
staller

Terminal-based UseAnaconda Prompt or Pow-
erShell

5.3 Conda

Conda is a package manager for Python and other languages. It helps you install packages and manage dependencies
easily.

5.3.1 Basics

check that it is correctly installed:

conda --version

keep Conda up-to-date with:

conda update conda

install a package (Replace `numpy` with the desired package name):

conda install numpy

install a specific version:

conda install numpy=1.25

install multiple packages at once:

conda install numpy pandas matplotlib

updating packages:

conda update numpy

removing packages:

conda remove numpy

searching for packages(replace `package_name` with the

name of the package you want to find):

conda search package_name

44 Chapter 5. Installing Python and some tools

https://www.anaconda.com/products/distribution
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Data Sciences and Spikes

5.3.2 Conda tips

Update Conda regularly to get bug ិxes and security updates.

If a package is not found, check alternative channels:

conda install -c conda-forge package_name

5.3.3 Summary of common Conda commands

Task Command

Check Conda version conda --version
Update Conda conda update conda
Install package conda install package_name
Install speciិc version conda install package_name=version
Install multiple packages conda install package1 package2
Update package conda update package_name
Remove package conda remove package_name
Search for package conda search package_name
Install from channel conda install -c conda-forge package_name

5.4 Conda virtual environment

5.4.1 Using Virtual Environments

Why Use a Virtual Environment in Python?

The problem without a virtual environment:

• By default, when you install a library with pip install, it goes into the system-wide Python.

• Risks:

– ⚠ Version conីicts between projects (e.g., one project needs numpy==1.20, another numpy==1.
26).

– ⚠Risk of breaking system tools that rely on Python (macOS and Homebrew depend on it).

– ⚠ Environment quickly polluted with dozens of unnecessary packages.

Solution: Virtual Environments

A virtual environment = an isolated copy of Python with its own libraries.

Advantages:

• Project-by-project isolation.

• No conីicts between library versions.

• Easier to share and reproduce a project (requirements.txt or environment.yml).

• You can delete a project without polluting the system.

5.4. Conda virtual environment 45

Data Sciences and Spikes

Two Main Choices: venv vs conda

venv (native Python virtual environments)

• Included in Python (python -m venv myenv).

• Lightweight, simple to use.

• Package management via pip install.

• Good for:

– Lightweight projects (Flask, Django, scripts).

– General development.

⚠ Limitations:

• pip installs only Python libraries.

• Some heavy libraries (numpy, scipy, torch, tensorីow…) may require compilation → possible errors.

conda (Anaconda/Miniconda environments)

• Also creates isolated environments (conda create -n myenv python=3.10).

• Can install not only Python libraries, but also system dependencies (BLAS, MKL, CUDA, etc.).

• Precompiled package distribution → fast and reliable installation.

• Good for:

– Data science and machine learning (numpy, pandas, scikit-learn, PyTorch, TensorFlow).

– Multi-language projects (Python + R + CUDA…).

⚠ Limitations:

• Heavier than venv.

• Package management can be slightly slower at times.

Important

⇨ Another reason to focus on the Anaconda solution

5.4.2 Conda Virtual Environments

Conda: Creating a New Environment

create a new Conda environment with a specific Python version (Replace `myenv`

with the name of your environment and `3.11` with the desired Python version)

conda create --name myenv python=3.11

Activate the environment before working in it:

conda activate myenv

When you are done, deactivate the environment to return to the base environment:

conda deactivate

46 Chapter 5. Installing Python and some tools

Data Sciences and Spikes

Conda: Listing and Removing Environments

list all available environments:

conda env list

remove an environment completely:

conda remove --name myenv --all

Conda: Installing Packages in an Environment

install a package in the active environment:

conda install numpy

install a specific version of a package:

conda install numpy=1.25

install multiple packages at once:

conda install numpy pandas matplotlib

Conda: Updating and Removing Packages

update a package in the current environment:

conda update numpy

remove a package from the environment:

conda remove numpy

Conda: Exporting and Reproducing Environments

to share or reproduce an environment, export it to a YAML file:

conda env export > environment.yml

create an environment from a YAML file:

conda env create -f environment.yml

5.4.3 Conda Tips

• Always use separate environments for diាerent projects to avoid conីicts.

• Update Conda regularly with conda update conda.

• Use the conda-forge channel if a package is not found in the default channels:

conda install -c conda-forge package_name

5.4. Conda virtual environment 47

Data Sciences and Spikes

Summary Table of Common Conda Environment Commands

Task Command

Create environment conda create --name myenv python=3.11
Activate environment conda activate myenv
Deactivate environment conda deactivate
List environments conda env list
Remove environment conda remove --name myenv --all
Install package conda install package_name
Install speciិc version conda install package_name=version
Install multiple packages conda install package1 package2
Update package conda update package_name
Remove package conda remove package_name
Export environment conda env export > environment.yml
Create from ិle conda env create -f environment.yml

5.5 Setting Up the Conda Virtual Environment for This Project

This section is intended for macOS users.

To run this Jupyter Book, I make use of a conda virtual environment, whose recipe i contained in
the ិle environment.yml that describes everything needed to create the conda environment named
python-dsspikes-env:

!cat environment.yml

name: python-dsspikes-env
channels:

- conda-forge
- defaults

dependencies:
- python=3.11
- numpy=1.26
- matplotlib=3.8
- pandoc=3.8 # removed build hash
- seaborn=0.12
- jupyter-book=1.0.4
- jupyterlab=4.1
- ipykernel
- csvkit
- pip
- pip:

- pyabf==2.3.8

name: python-dsspikes-env tells conda what name you assign to the environment. WHen you run:

conda env create -f environment.yml

Conda reads that line and creates an environment with that name. So after creation, you’ll activate it with:

conda activate python-dsspikes-env

Each time you run it, conda will move one step “up”: If you’re inside python-dsspikes-env, it will go back to (base).
If you’re already in (base), it will deactivate completely (no environment active). So the cycle is:

48 Chapter 5. Installing Python and some tools

Data Sciences and Spikes

conda activate python-dsspikes-env
... work here ...

conda deactivate

The quickest way to check which conda environment is active is:

conda info --envs

or its shorthand:

conda env list

hence:

(python-dsspikes-env) data-science-spikes$ conda env list
conda environments:
#
base /Users/campillo/miniforge3
myenv /Users/campillo/miniforge3/envs/myenv
python-dsspikes-env * /Users/campillo/miniforge3/envs/python-dsspikes-env

• The * shows which environment is currently active.

• In your shell prompt, the active environment name also appears in parentheses, e.g.
(python-dsspikes-env) data-science-spikes$ (here (conda_virtual_env) di-
rectory_name.

To check the active conda environment inside a Jupyter notebook, you have a few options:

1. Check sys.executable

import sys

sys.executable # This shows the path to the Python binary being used.

'/Users/campillo/miniforge3/envs/python-dsspikes-env/bin/python'

2. Check environment variables

import os

os.environ.get("CONDA_DEFAULT_ENV")

'python-dsspikes-env'

3. Print Python packages & versions To conិrm everything is coming from the right env:

!which python
!python --version
!pip list | grep -E "pyabf|matplotlib|seaborn"

/Users/campillo/miniforge3/envs/python-dsspikes-env/bin/python

Python 3.11.13

matplotlib 3.8.4
matplotlib-inline 0.1.7
pyabf 2.3.8
seaborn 0.12.2

and !pip list for the complete list.

Setting Up the Conda Virtual Environment for This Project

5.5. Setting Up the Conda Virtual Environment for This Project 49

Data Sciences and Spikes

This project uses Python packages such as numpy, matplotlib, seaborn, and pyabf.
To ensure reproducibility and avoid conីicts with other Python projects, we recommend using a dedicated Conda
virtual environment.

1. Create the environment - Run the following command in your terminal:

conda env create -f environment.yml

This will create a new environment named jupyter-env (as speciិed in environment.yml). All
required packages for this Jupyter Book project will be installed.

2. Activate the environment

conda activate jupyter-env

Your terminal prompt should now show (jupyter-env), indicating the environment is active.

3. Make the environment available in Jupyter

python -m ipykernel install --user --name=jupyter-env --display-name "Python␣
↪(jupyter-env)"

This allows notebooks to select the correct kernel.

4. Verify installation - You can test that everything is installed correctly:

python -c "import numpy, matplotlib, seaborn, pyabf; print('All imports OK!')"

If no errors appear, the environment is ready to use.

5. Launch Jupyter Lab or Notebook

Launch Jupyter Lab

jupyter lab

or launch classic Jupyter Notebook

jupyter notebook

In the notebook (top right), select Kernel → Python (jupyter-env).

6. Updating the environment – If you modify environment.yml later (e.g., adding packages), update the environ-
ment:

conda env update -f environment.yml --prune

--prune removes packages no longer listed in environment.yml.

Notes:

• Keep all project-speciិc packages inside the virtual environment; do not install them in base.

• For reproducibility, commit environment.yml to your repository.

50 Chapter 5. Installing Python and some tools

CHAPTER

SIX

INTERACTIVE COMPUTING WITH JUPYTER BAZAAR

Jupyter, Jupyter Notebook, JupyterLab, Binder / MyBinder, Jupyter{book}, Colab, Deepnote

6.1 Jupyter and around

The Jupyter ecosystem evolved tomake computing interactive, reproducible, and shareable. It began with IPython,
an enhanced Python shell for rapid experimentation, and expanded into Jupyter to support multiple languages through
a decoupled kernel-interface model. Jupyter Notebook introduced a web-based environment combining code, out-
puts, and narrative text, ideal for teaching, research, and data analysis. JupyterLab provides a modern, ីexible
workspace for managing notebooks, scripts, and data in complex projects. Finally, Jupyter{book} allows structured,
publication-quality books and websites to be built from notebooks and Markdown, fully executable and shareable.
Together, these tools address the need for interactive coding, reproducibility, multi-language support, and clear
communication of computational results, even beyond Python:

• Jupyter is an open-source project that evolved from IPython. IPython originally provided an enhanced inter-
active Python shell, with powerful features like introspection, rich media, and tab-completion, making Python
more user-friendly for experimentation and data analysis. Jupyter extended this idea to multiple program-
ming languages (Python, R, Julia, and more) by separating the kernel (which executes code) from the inter-
face (which displays results interactively).

• Jupyter Notebook builds on this foundation, providing a web-based interactive environment where users can
write and execute code, display rich outputs (plots, images, LaTeX, widgets), and combine them with narrative
text. This allows notebooks to serve as reproducible documents for data analysis, teaching, and scientiិc
communication.

• JupyterLab is the next-generation interface for Jupyter, oាering a modular, ຄexible environment where
users can work with notebooks, text editors, terminals, and data ិles all in one workspace. It improves produc-
tivity for complex projects, supports extensions, and makes multi-document workីows smoother than classic
notebooks.

• Binder/MyBinder is a cloud service that allows users to launch fully executable Jupyter environments
directly from GitHub repositories. It lets anyone run notebooks or Jupyter Books without installing anything
locally, making content fully interactive and reproducible online.

• Jupyter{book} extends the Jupyter ecosystem by allowing users to turn collections of notebooks andMark-
down ຃les into interactive, publication-quality books and websites. Unlike standalone notebooks, Jupyter
Books provide structured chapters, table-of-contents, cross-references, and can be executed to show live out-
puts, making them ideal for teaching, tutorials, and reproducible scientiិc publications.

Jupyter Ecosystem Evolution (approximate years)
==

IPython (2001) – interactive Python shell
│
▼

Jupyter (2014) – multi-language kernel architecture
│

(continues on next page)

51

https://ipython.org
https://jupyter.org
https://jupyter.org
https://jupyter.org
https://jupyterbook.org/en/stable/intro.html
https://jupyter.org
https://ipython.org
https://jupyter.org
https://jupyterlab.readthedocs.io/en/latest/
https://mybinder.org/
https://jupyterbook.org/

Data Sciences and Spikes

(continued from previous page)

├── Jupyter Notebook (2015) – web-based interactive notebooks
│ – web-based interactive notebooks
|
├── JupyterLab (2018)
│ – modern IDE-like workspace for notebooks & files
│
├── Binder / MyBinder (2017)
│ – cloud service for executable notebooks (and later books)
|
└── Jupyter{book} (2018+)

– structured, publication-quality books from notebooks & Markdown

6.2 Colab

Colab is Google’s cloud version of Jupyter Notebook, fully integrated with the Jupyter ecosystem, making it easy to
run, share, and collaborate on notebooks online.

Colab (2017) sits in this ecosystem as a cloud-hosted Jupyter Notebook environment:

• Runs notebooks without local setup.

• Provides free CPU/GPU/TPU resources.

• Enables real-time collaboration like Google Docs.

• Fully compatible with .ipynb notebooks, so you can open notebooks from GitHub or Jupyter Book in Colab.

Colab is designed:

• For students, researchers, or teams who don’t want to install Python locally.

• To share interactive notebooks with reproducible results.

• To test notebooks from GitHub quickly.

6.3 Jupyter {book}

jupyter {book} and two important ិles:

• _conិg.xml

• _toc.yml

Launch into interactive computing interfaces

6.3.1 Jupyter backends

the Jupyter inline backend is what converts your Matplotlib ិgures into embedded images inside notebooks, and
%config InlineBackend... is how you control their quality and format.

%config InlineBackend.figure_format = 'pdf' # fine but could be combersome

%config InlineBackend.figure_format = 'svg' # "

%config InlineBackend.figure_format = 'retina' #

%config InlineBackend.figure_format = 'png'
%config InlineBackend.rc = {'figure.dpi': 200} # or 300 for print quality

52 Chapter 6. Interactive computing with Jupyter bazaar

https://jupyterbook.org/en/stable/intro.html
https://jupyterbook.org/en/stable/customize/config.html
https://jupyterbook.org/en/stable/structure/configure.html
https://jupyterbook.org/en/stable/interactive/launchbuttons.html

Data Sciences and Spikes

with retina the Jupyter inline backend actually tells Matplotlib to render the ិgure at double the standard DPI (so
if your default is 100 dpi, it makes a 200 dpi PNG). Then the notebook displays it at the normal on-screen size, so it
looks sharper on high-density displays (like MacBooks) and also when the image gets embedded in the LaTeX/PDF
build.

Other backends:

%matplotlib inline # use inline backend

%matplotlib notebook # interactive plots inside notebook

%matplotlib widget # interactive with ipywidgets

6.3. Jupyter {book} 53

Data Sciences and Spikes

54 Chapter 6. Interactive computing with Jupyter bazaar

CHAPTER

SEVEN

CSV IN THE CONTEXT OF PANDA AND CSVKIT

7.1 Basics about csv

CSV, for Comma-Separated Values, is a plain text format where each row represents a record, and columns are
separated by commas (,). Example:

name,age,city
Alice,34,Paris
Bob,29,London
Charlie,41,Rome

CSV is a plain text (ASCII) format that makes data human-readable, easy to generate or parse in virtually any pro-
gramming language (Python, R, SQL, Excel, etc.), and portable across operating systems (Windows, Unix, macOS).
Because it’s just text with no dependencies, CSV ិles are simple to share—whether by email, version control systems
like GitHub, or quick inspection with tools such as less or cat. They work well for small-to-medium datasets,
even with millions of rows, but come with limitations: all values are treated as text until explicitly parsed, and the
format lacks support for data types or nested/complex structures.

With python there are 2 ways to deal with CSV:

• Built-in support: Python’s standard library includes the csvmodule, which lets you read and write CSV ិles
without installing anything extra. It handles splitting rows into ិelds, quoting, delimiters, and more.

• With pandas: For data analysis, the pandas library makes CSV handling much more powerful. pandas.
read_csv("file.csv") loads data directly into a DataFrame, automatically inferring types (numbers,
strings, dates) and oាering options for missing values, encodings, and delimiters. Saving back is just as easy
with .to_csv().

Here we will use this second solution. Later we will also present a non-python handy tool called csvkit which
regroups command-line utilities for quick inspection and transformation of CSV ិles, often faster than writing a
Python script.

7.2 Pandas DataFrame

pandas DataFrame (df) is far better than built-in Python tools like lists, dictionaries, or arrays for the following
reasons:

• Tabular structure built-in

– A DataFrame behaves like a table or spreadsheet: rows = records, columns = ិelds.

– You don’t have to manually manage parallel lists or nested dictionaries.

• Easy indexing and ិltering: doing the same with lists/dicts would require loops and conditionals —much more
verbose

• Powerful aggregation & grouping: compute counts, averages, sums, or custom statistics without writing loops

• Built-in handling of missing data

55

https://docs.python.org/3/library/csv.html

Data Sciences and Spikes

– Pandas understands NaN values automatically.

– Built-in functions handle missing data gracefully.

• Integration with plotting and analysis

• Easy I/O; Load/save CSV, Excel, SQL, JSON, and more with a single command.

See infra.

Main methods on df:

• Exploring the structure

df.shape # dimensions (rows, columns)

df.columns # list of column names

df.dtypes # data types of each column

df.info() # concise summary

df.head(5) # first 5 rows

df.tail(5) # last 5 rows

• Inspecting the data

df.describe() # statistics (mean, std, min, max, quartiles)

df.value_counts() # count frequency of values (for a Series)

df.unique() # unique values (for a Series)

df.isnull().sum() # count missing values per column

df.sample(5) # random sample of rows

• Selecting and ិltering

df['col'] # select one column

df[['col1','col2']] # select multiple columns

df.loc[0] # select by label

df.iloc[0] # select by index

df[df['col'] > 10] # filter rows

• Sorting and grouping

df['col'] # select one column

df[['col1','col2']] # select multiple columns

df.loc[0] # select by label

df.iloc[0] # select by index

df[df['col'] > 10] # filter rows

• Modifying

df.rename(columns={'old':'new'}, inplace=True) # rename columns

df.drop(columns=['col'], inplace=True) # drop column

df.dropna() # drop rows with NaN

df.fillna(0) # fill NaN with 0

df.assign(newcol=df['col']*2) # add new column

• Exporting

df.to_csv('file.csv', index=False) # save as CSV

df.to_excel('file.xlsx', index=False) # save as Excel

56 Chapter 7. csv in the context of panda and csvkit

Data Sciences and Spikes

7.3 csvkit the command-line Swiss Army knife

7.3.1 Installation under you favorite conda environment

conda activate python-dsspikes-env
conda install -c conda-forge csvkit # That updates the live environment.

Export the environment back to environment.yml: Now that your environment has csvkit, you need to reីect
it in your YAML ិle:

conda env export --from-history > environment.yml

--from-history ensures only the packages you explicitly installed are recorded (cleaner ិle, avoids tons of build
hashes). Now your environment.yml will include csvkit in dependencies.

7.3.2 Basics command-line tools

in2csv: Excel Slayer

converts various tabular data formats—like Excel (.xls, .xlsx), DBF, ិxed-width, or even Google Sheets—into clean,
standard CSV.

Convert Excel to CSV and print to stdout

in2csv data.xlsx

Convert Excel to CSV and save to a file

in2csv data.xlsx > data.csv

List sheet names in an Excel file

in2csv -n data.xlsx

Convert a specific sheet

in2csv -s "Sheet1" data.xlsx > data.csv

Convert formats, here CSV to JSON:

in2csv data/records_fake_metadata.csv | csvjson > metadata.json

csvlook: Data Periscope

Quickly inspect your CSV in the terminal. Allows you to display CSV ិles in a nicely formatted, readable table in
the terminal — almost like a “pretty-printed” view of your data. Pipe to less -S to scroll horizontally:

csvlook data/records_fake_metadata.csv | less -S

Preview the ិrst few rows:

csvlook data/records_fake_metadata.csv | head -n 12

7.3. csvkit the command-line Swiss Army knife 57

Data Sciences and Spikes

csvcut: Data Scalpel

Select columns by name or index:

By name

csvcut -c cell_id,protocol,prot-opt data/records_fake_metadata.csv

By index (first column is 1)

csvcut -c 1,4,6 data/records_fake_metadata.csv

csvgrep: Data Filter

Filter rows based on column values:

Keep only rows where protocol is IC

csvgrep -c protocol -m IC data/records_fake_metadata.csv

Keep only rows where prot-opt contains "ramp"

csvgrep -c prot-opt -m ramp data/records_fake_metadata.csv

csvsort: Data Organizer

Sort your CSV by one or more columns:

Sort by date

csvsort -c date data/records_fake_metadata.csv

Sort by protocol, then by date

csvsort -c protocol,date data/records_fake_metadata.csv

csvstat: Quick Stats

Get basic stats and info about the CSV:

csvstat data/records_fake_metadata.csv

Combining commands

You can pipe all the line commands. For example, get cell_id and ិle_name for all IC steps:

csvgrep -c protocol -m IC data/records_fake_metadata.csv \
| csvgrep -c prot-opt -m steps \
| csvcut -c cell_id,file_name \
| csvlook

58 Chapter 7. csv in the context of panda and csvkit

CHAPTER

EIGHT

DIAGNOSTIC

8.1 Myst

This page testsMyST Markdown extensions.

8.1.1 � Task list

• [x] Done

• [] Not yet done

8.1.2 � Admonitions

Note

This is a note admonition.

Warning

This is a warning admonition.

8.2 Emoji Test Page

This page demonstrates using emojis in a Jupyter Book PDF.

8.2.1 Inline Emoji

Here is a lightbulb emoji inline: :emoji:1F4A1 �

Here is a rocket emoji inline: :emoji:1F680 �

59

Data Sciences and Spikes

8.2.2 Emoji with text

• :emoji:1F4A1 Idea: Always document your data!

• :emoji:1F680 Launch: Start your analysis.

• :emoji:1F680 Rocket + Math: Ӻ = ԜԒ
2 :emoji:1F680

8.2.3 Emoji in a list

1. :emoji:1F4DA Read the documentation �

2. :emoji:1F4BB Use Python �

3. :emoji:1F4A1 Generate ideas �

8.2.4 Emoji in headers

:emoji:1F680 Getting Started

:emoji:1F4A1 Tips & Tricks

60 Chapter 8. Diagnostic

INDEX

A
abf, 10
anaconda, 41

C
colab, 52
conda, 44

virtual environment, 45
csv, 55
csvkit, 26, 57

csvcut, 58
csvgrep, 58
csvlook, 57
csvsort, 58
csvstat, 58
in2csv, 57

D
databases, 13

Dandi Archive, 14
Dryad, 13
NLM Dataset Catalog, 13
Zenodo, 14

E
elephant, 7

I
ibw, 10, 15

J
jupyter, 51
jupyter book, 52

M
miniconda, 42
MNE, 7

N
NeuralEnsemble, 7
nwb, 10

O
osl-ephys, 7

P
Panda

DataFrame, 21, 56
read_csv, 22

Panda DataFrame
head(), 22
info(), 22

pyabf, 15
pynapple, 7
pynwb, 15

S
syncopy, 7

61

	I Content
	Resources and references
	Some Python packages
	Resources and references for general data sciences
	Books
	Jupyter (note)books

	Resources and references for data sciences in neurosciences
	References
	Spike Train and Electrophysiology Data Analysis
	Math books
	Python packages
	Jupyter (note)book(s)

	Blog(s) and blog posts
	Misc.
	Other tools

	Sometimes we don’t even know what we’re talking about

	Electrophysiology data
	Types of electrophysiology recordings
	Common electrophysiology data formats
	Most used electrophysiology data formats
	Summary table
	Companies and formats

	Databases
	NLM Dataset Catalog
	Dryad
	Dandi Archive
	Zenodo

	Gateways with Python

	Exploring a database with csv
	Building a csvfile
	Good practrices about records directory
	Directory structure: flatten or not?
	Metadata handling
	README.md
	File Naming
	Keep raw data read-only

	Back to the case study
	Pandas DataFrame
	Back to the case study: the boring job !
	Exploring the metadata
	First we read the csv and create a dataframe object:
	Filtering
	All dead cells experiments
	All experiment of the day ‘2024-05-29’
	All IC ramp

	csvkit the command-line Swiss Army knife

	Exploring records with pyabf
	Using External Python Packages
	pyABF on the net
	Exploring abf files
	abf files and pyabf library
	ABF File Overview

	pyabf Library
	Basics about abf objects
	Atributes
	Methods

	Basic abf file exploration
	Main abf attributes and methods
	Some statistics of 1 sweep

	Plots
	Plotting the voltage trace distribution
	Plotting one sweep with input current
	Plotting all sweeps
	Plotting all sweeps with all inputs

	II Appendices
	Installing Python and some tools
	Main Python distributions for data sciences
	System Python
	Official Python from Python.org
	Anaconda
	Miniconda
	Platform-Specific Package Managers (optional)
	Summary Table

	Installing Anaconda and Miniconda
	Installing Anaconda
	Installing Miniconda
	Tips and Notes
	Summary Table

	Conda
	Basics
	Conda tips
	Summary of common Conda commands

	Conda virtual environment
	Using Virtual Environments
	Why Use a Virtual Environment in Python?
	Solution: Virtual Environments
	Two Main Choices: venv vs conda

	Conda Virtual Environments
	Conda: Creating a New Environment
	Conda: Listing and Removing Environments
	Conda: Installing Packages in an Environment
	Conda: Updating and Removing Packages
	Conda: Exporting and Reproducing Environments

	Conda Tips
	Summary Table of Common Conda Environment Commands

	Setting Up the Conda Virtual Environment for This Project

	Interactive computing with Jupyter bazaar
	Jupyter and around
	Colab
	Jupyter {book}
	Jupyter backends

	csv in the context of panda and csvkit
	Basics about csv
	Pandas DataFrame
	csvkit the command-line Swiss Army knife
	Installation under you favorite conda environment
	Basics command-line tools
	in2csv: Excel Slayer
	csvlook: Data Periscope
	csvcut: Data Scalpel
	csvgrep: Data Filter
	csvsort: Data Organizer
	csvstat: Quick Stats
	Combining commands

	Diagnostic
	Myst
	✅ Task list
	📦 Admonitions

	Emoji Test Page
	Inline Emoji
	Emoji with text
	Emoji in a list
	Emoji in headers
	:emoji:1F680 Getting Started
	:emoji:1F4A1 Tips & Tricks

	Index

