DATA SCIENCE
& SPIKES

Fabien Campillo

2025






Data Sciences and Spikes

Fabien Campillo

Oct 03, 2025






CONTENTS

I Content 3
1 Resources and references 5
1.1 Some Python packages . . . . . . .. . . . ... 5
1.2 Resources and references for general datasciences . . . . . . . .. . ... ... ... 6
1.3 Resources and references for data sciences in NEUroSCIENCeS . . . . . . v v v v v e v e uu .. 6
1.4 Sometimes we don’t even know what we're talkingabout . . . . .. ... ... ... ... 0. .. 8
2 Electrophysiology data 9
2.1  Types of electrophysiology recordings . . . . . . . . . . o v i i i e e e 9
2.2 Common electrophysiology data formats . . . . . . .. . ... ... .. .. . 10
2.3 Most used electrophysiology data formats . . . . . . . ... oL o oL 10
24 Databases . . . . ..o e e e e e e e e e e e e e e e 13
2.5 GatewayswithPython . . . . . . . .. .. 15
3 Exploring a database with csv 17
3.1 Buildingacsvfile . .. ... . e 17
3.2 Good practrices about records directory . . . . .. ... L. oo e 18
3.3 Backtothecasestudy . . . . . . . . . i i e e e e e e e e e e 19
34 Pandas DataFrame . . . . . . . . . . ... e 20
3.5 Backtothe case study: the boring job ! . . . .. ... Lo 21
3.6 Exploring the metadata . . . . . . . . . . . . L. e e 22
3.7  First we read the csv and create a dataframe object: . . . . . . .. ... .. oL 22
3.8 Filtering . . . . . . . e e e e 25
3.9 csvkit the command-line Swiss Armyknife . . . . . .. ... ... oL L. 26
4 Exploring records with pyabf 29
4.1  Using External Python Packages . . . . . . . ... .. .. . ... ... . .. . 29
42 pyABFonthenet. . . . . . . . . e e e e e e e e e 29
43 Exploringabffiles . . . . . . . L e e e e 30
4.4 Plots . . . . 34
II Appendices 39
5 Installing Python and some tools 41
5.1  Main Python distributions for data sciences . . . . . . .. .. ..o Lo 41
5.2 Installing Anaconda and Miniconda . . . . . . . ... ... oL oL 43
53 Conda. . . . .. e e e e e 44
54 Condavirtual environment . . . . . . . . ..ol e e e e e e 45
5.5  Setting Up the Conda Virtual Environment for This Project . . . . . . . . ... ... ... .... 48
6 Interactive computing with Jupyter bazaar 51
6.1 Jupyterand around . . . . . ..l e e 51
6.2 Colab . . . . e e 52
6.3  Jupyter {bOOK} . . . . . e e e e e 52




7 csvin the context of panda and csvkit

7.1
7.2
7.3

Basics about csv
Pandas DataFrame

csvkit the command-line Swiss Army knife . . . . . . .. ... o000

8 Diagnostic

8.1
8.2

Index

Myst ... ...
Emoji Test Page

55
55
55
57

59
59
59

61




Data Sciences and Spikes

This Jupyter Book is designed to help you get started in data science by exploring electrophysiological data, especially
spike train recordings, in a practical and accessible way.

Even though we are mainly interested in processing electrophysiology measurements such as spikes, we will attempt
an overview of neuroscience resources.

We will focus on electrophysiology data processing and distinguish between:
* M/EEG data, non-invasive/extracranial,

* and invasive data at the single neuron level or from a population of neurons, notably using MEA (Multi-
Electrode Array).

It is this second category that is of most interest to us (MathNeuro). The first category is very well developed. Pro-
cessing extracranial electrophysiological data (EEG/MEG) is generally more complex than processing intracranial
measurements (spikes, LFP, ECoG). In intracranial recordings, electrodes are close to neurons: the signal is more
localized, with a better signal-to-noise ratio, which facilitates the identification of action potentials or local fields. In
contrast, extracranial signals are heavily attenuated, resulting from the summation of millions of neurons and dis-
torted by cranial tissues. They are also contaminated by numerous artifacts. Analysis therefore requires advanced
processing (filtering, correction, modeling) and solving the inverse problem (retrieving brain sources from incomplete
and ambiguous measurements, which is a mathematically ill-posed problem).

@ Important

This notebook relies on Python packages such as numpy, matplotlib, pyabf, seaborn, and others. To
ensure reproducibility and avoid conflicts with other Python projects, it is strongly recommended to use a
dedicated virtual environment. For detailed instructions on setting up the environment, see the beginning of
Chapter Exploring records with pyabf .

This Jupyter Book is part of the Data Science Bootcamp for MathNeuro and is made openly accessible to the broader
community.

This Jupyter book https://fabien-campillo.github.io/data-science-spikes/ ® The GitHub repository https://github.
com/fabien-campillo/data-science-spikes

Several parts of this book, including sections of the Markdown content and Python source code, were generated or
refined with the assistance of ChatGPT-4, which also provided guidance on building this Jupyter Book. Some of the
prompts used with ChatGPT are preserved as comments in the Markdown cells, providing a peek into the questions and
guidance that shaped the content. While this tool was helpful in drafting and organizing content, all remaining errors
and final decisions are entirely my own.

By Fabien Campillo Email me © Copyright 2025. This work is licensed under CC BY-NC-SA 4.0 (Creative Com-
mons Attribution-NonCommercial-ShareAlike).
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CHAPTER
ONE

RESOURCES AND REFERENCES

I've put together some resources and references using Python (but keep in mind, R is another popular route into data
science).

1.1 Some Python packages

First, I list some indispensable Python libraries used in data science. In addition to core Python, you should also start
getting familiar with a few other tools:

* Python’s classics:
— NumPy — numerical computing and array manipulation.
— SciPy - scientific computing and statistics.
— Matplotlib — basic plotting library.
* Data Manipulation:
— Pandas — data structures and analysis tools.
* Statistical Analysis:
— statsmodels — estimation of statistical models, statistical tests, and data exploration.
¢ Machine Learning:
— Scikit-learn — widely used machine learning library.
¢ Natural Language Processing (NLP):
— NLTK - platform for working with human language data.
— SpaCy — main library for NLP tasks.
— Gensim — topic modeling library.
 Data Visualization:
— Seaborn — statistical data visualization.
— Plotly — interactive graphing library.
¢ Web Scraping:
— BeautifulSoup — extracting data from HTML files.



https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://pandas.pydata.org
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
https://www.nltk.org
https://spacy.io
https://radimrehurek.com/gensim/intro.html
https://seaborn.pydata.org
https://plotly.com/python/
https://beautiful-soup-4.readthedocs.io/en/latest/
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1.2 Resources and references for general data sciences

1.2.1 Books

¢ An Introduction to Statistical Learning with Applications in Python, Springer 2023, by Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan Taylor. See Book Homepage and Resources
with the PDF and the associated Youtube videos with Trevor Hastie & Jonathan Taylor (and it starts with
Trevor complimenting Jonathan on his new haircut, why not...). Trevor Hastie is one of the big dudes in
statistics (see his book “The Elements of Statistical Learning: Data Mining, Inference, and Prediction”), and
Jonathan Taylor is a younger statistician with a nice new haircut.

* Python for Data Analysis (3rd ed.), O'Reilly 2022, by Wes McKinney a creator of Panda. The open edition
is avalaible, with the codes, see his GitHub for other resources.

e Python Data Science Handbook (2nd ed.), O’Reilly 2022, by Jake VanderPlas — full text, and the associated
Jupyter Notebook (very nice!), see his GitHub for other resources.

¢ Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python (2nd ed.), O’Reilly
2020, by Peter Bruce, Andrew Bruce, Peter Gedeck. See the GitHub with the Python codes and notebooks.

¢ Python for Probability, Statistics, and Machine Learning (3rd ed.), Springer 2022, by José Unpingco. See
his GitHub for other resources.

e Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow (3rd ed.), O’Reilly 2022, by Au-
rélien Géron, and the associated notebooks, see his GitHub for other resources. Machine learning and deep
Learning.

* Deep Learning Illustrated, Addison-Wesley 2019, by Jon Krohn, with the associated notebooks, the concept
if quite interesting. See also this github.

I do not provide references on the basic mathematical foundations of data science, which usually include linear alge-
bra, calculus (with a focus on optimization), probability theory, statistics (both elementary and inferential), discrete
mathematics (graphs, combinatorics, logic), and sometimes numerical methods. I also do not include general ref-
erences on statistics, machine learning, or Python programming itself, as well as topics related to databases such as
SQL, relational database design, and NoSQL systems. There are numerous high-quality resources available for all
these areas.

1.2.2 Jupyter (note)books

Among the previous references:
* Jake VanderPlas’ Python Data Science Handbook

* Aurélien Géron’s notebooks, a series of Jupyter notebooks that walk you through the fundamentals of Machine
Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

* Wes McKinney’s “Python for Data Analysis” open edition and notebooks.

1.3 Resources and references for data sciences in neurosciences

1.3.1 References

¢ Python in Neuroscience, E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P. Davison
Frontiers in Neuroinformatics, 9, 2015.

¢ Case Studies in Neural Data Analysis, 2016 - The book presents MATLAB tools, but there is an asso-
ciated GitHub repository for Python. The book primarily covers extracranial data, except Chapter 8: Basic
Visualizations and Descriptive Statistics of SpikeTrainData.
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https://link.springer.com/book/10.1007/978-3-031-38747-0
https://www.statlearning.com
https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html
https://youtube.com/playlist?list=PLoROMvodv4rNHU1-iPeDRH-J0cL-CrIda&amp;feature=shared
https://hastie.su.domains
https://hastie.su.domains/ElemStatLearn/
https://jtaylor.su.domains
https://www.oreilly.com/library/view/python-for-data/9781491957653/
https://wesmckinney.com
https://wesmckinney.com/book/
https://github.com/wesm/pydata-book/tree/3rd-edition
https://github.com/wesm
https://www.oreilly.com/library/view/python-data-science/9781491912126/
http://vanderplas.com
https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/jakevdp
https://www.oreilly.com/library/view/practical-statistics-for/9781492072935/
https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master
https://github.com/gedeck/practical-statistics-for-data-scientists/tree/master/python
https://link.springer.com/book/10.1007/978-3-031-04648-3
https://github.com/unpingco
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://github.com/ageron
https://github.com/ageron
https://github.com/ageron/handson-ml2
https://github.com/ageron
https://www.deeplearningillustrated.com
https://www.jonkrohn.com
https://github.com/the-deep-learners/deep-learning-illustrated
https://github.com/jonkrohn/DLTFpT
https://github.com/jakevdp/PythonDataScienceHandbook
https://github.com/ageron/handson-ml2
https://wesmckinney.com/book/
https://github.com/wesm/pydata-book/tree/3rd-edition
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2015.00011/full
https://mitpress.ublish.com/book/case-studies-neural-data-analysis
https://github.com/Mark-Kramer/Case-Studies-Kramer-Eden
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¢ Neural Data Science (2020-23), Aaron J. Newman from the NeuroCognitive Imaging Lab (Dalhousie Uni-
versity, Halifax).
Starts from scratch, especially in Python. Includes a section on Single Unit Data. See the GitHub repository
for the Jupyter Book and the YouTube channel Neural Data Science with Python.

¢ Neural Data Science: A Primer with MATLAB and Python, Erik Lee Nylen and Pascal Wallisch, 2017.
See the table of contents.

1.3.2 Spike Train and Electrophysiology Data Analysis
Math books

¢ The contributions of Robert E. Kass are noteworthy. Rob Kass is a renowned statistician, and he has also
contributed to the modeling and statistical analysis of Neural Spike Train Data, and to machine learning. One
can refer to his book Analysis of Neural Data, which is actually an excellent introductory book on probability
and statistics through the lens of neural data. His page Contributions to Analysis of Neural Spike Train Data
also provides an overview of his contributions to the field.

¢ Analysis of Parallel Spike Trains edited by S. Griin and S. Rotter (Springer, 2010).
* Stochastic Models for Spike Trains of Single Neurons by G. Sampath and S. K. Srinivasan

Python packages

* syncopy - Systems Neuroscience Computing in Python: a Python package for large-scale analysis of electro-
physiological data, with the following article.

¢ MNE - Open-source Python package for exploring, visualizing, and analyzing human neurophysiological data:
MEG, EEG, sEEG, ECoG, NIRS, and more).

¢ pynapple — Python Neural Analysis Package. Pynapple is a lightweight Python library for neurophysiological
data analysis. See the article: Pynapple, a toolbox for data analysis in neuroscience, 2023.

« osl-ephys - This package contains models for analysing electrophysiology data. It builds on top of the widely
used MNE-Python package and contains analysis tools for M/EEG sensor and source space analysis. From the
Oxford Centre for Human Brain Activity Analysis Group, with this GitHub repository and this 2025 paper:
osl-ephys: a Python toolbox for the analysis of electrophysiology data.

¢ Elephant - Electrophysiology Analysis Toolkit is an emerging open-source, community centered library for
the analysis of electrophysiological data in the Python programming language. Elephant focuses on generic
analysis functions for spike train data and time series recordings from electrodes GitHub repository

¢ NeuralEnsemble — a community-based initiative to promote and coordinate open-source software develop-
ment in neuroscience. Inactive since 2022.

Jupyter (note)book(s)

* Spike sorting the ‘Do It Yourself” way a Jupyter book by Christophe Pouzat with the gitlab repository.
See also the Probabilistic Spiking Neuronal Nets: Companion associated with tge book Probabilistic Spiking
Neuronal Nets co-authored with Antonio Galves and Eva Locherbach.
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https://neuraldatascience.io/
https://www.dal.ca/faculty/science/psychology_neuroscience/faculty-staff/our-faculty/aaron-newman.html
https://www.ncilab.ca
https://neuraldatascience.io/6-single_unit/introduction.html
https://github.com/neural-data-science/NESC_3505_textbook
https://www.youtube.com/playlist?list=PLtfEWMIgWS22MMZjPIzBRE2cHhMcvEKwp
https://www.sciencedirect.com/book/9780128040430/neural-data-science
https://www.stat.cmu.edu/~kass/
https://www.stat.cmu.edu/~kass/research.html#and
https://www.stat.cmu.edu/~kass/contrib.html
https://link.springer.com/book/10.1007/978-1-4419-5675-0
https://link.springer.com/book/10.1007/978-3-642-48302-8
https://github.com/esi-neuroscience/syncopy
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2024.1448161/full
https://mne.tools/stable/index.html
https://pynapple.org
https://elifesciences.org/reviewed-preprints/85786
https://osl-ephys.readthedocs.io/en/latest/
https://www.psych.ox.ac.uk/research/ohba-analysis-group
https://github.com/OHBA-analysis/OHBA-Examples/tree/main
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1522675/full
https://elephant.readthedocs.io/en/latest/
https://github.com/NeuralEnsemble/elephant
http://neuralensemble.org
https://c_pouzat.gitlab.io/spike-sorting-the-diy-way/
https://xtof.perso.math.cnrs.fr
https://gitlab.com/c_pouzat/spike-sorting-the-diy-way
https://probabilistic-spiking-neuronal-nets-c-pouzat-491a1ca82ffec5679d.gitlab.io/index.html
https://link.springer.com/book/10.1007/978-3-031-68409-8
https://link.springer.com/book/10.1007/978-3-031-68409-8
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1.3.3 Blog(s) and blog posts
¢ Spikes and Bursts — an interesting blog by David Cabrera-Garcia, where he explores various concepts.
He also runs a YouTube channel and shares projects on GitHub. An interesting post:
— Patch-clamp data analysis in Python: animate time series data.

* Patch clamp electrophysiology analysis with Python (2023) by Vincenzo Mastrolia

1.3.4 Misc.

e ElecFeX - A MATLAB-based Electrophysiological Feature eXtraction toolbox for single-cell intracellular
recordings. See the article: ElecFeX is a user-friendly toolbox for efficient feature extraction from single-cell
electrophysiological recordings

1.3.5 Other tools

Before analyzing data, we first need to read electrophysiology recordings and handle the different standards used.

e The pyABF library was created by Scott Harden. We will return to that package in a future section.

1.4 Sometimes we don’t even know what we’re talking about

Data science, statistics, math, machine learning—sure, they’re all great when applied to modeling and
analyzing spikes and bursts. But let’s not forget: we also need to paddle upstream to the very source of
those signals. Where do the spikes and bursts records come from? The experimental lab. And what do
they actually represent? The wild and real dynamics of real neurons.

¢ Guide to Research Techniques in Neuroscience by Matt Carter, Rachel Essner, Nitsan Goldstein, and Man-
asi Iyer (2022, 3rd Edition)

¢ Electrophysiological Recording Techniques edited by Robert P. Vertes and Timothy Allen (Springer, 2022).

¢ Introduction to Electrophysiological Methods and Instrumentation by Franklin Bretschneider and Jan R.
de Weille (Academic Press, Second edition, 2019).

 Basic Electrophysiological Methods edited by Matt Carter and Ellen Covey (Oxford University Press, 2015)

e The Laboratory Computer: A Practical Guide for Physiologists and Neuroscientists by John Dempster
(Academic Press, 2001).
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https://spikesandbursts.wordpress.com
https://scholar.google.com/citations?user=Dmwnwb4AAAAJ&amp;hl=en
https://spikesandbursts.wordpress.com/neuroscience-contents/
https://www.youtube.com/@spikesandbursts/videos
https://github.com/dav1dcg
https://spikesandbursts.wordpress.com/tag/patch-clamp/
https://www.scientifica.cn/neurowire/patch-clamp-electrophysiology-analysis-with-python
https://devneuro.org/cdn/people-detail.php?personID=2242
https://github.com/XinyueMa-neuro/ElecFeX
https://www.sciencedirect.com/science/article/pii/S2667237524001437
https://www.sciencedirect.com/science/article/pii/S2667237524001437
https://pypi.org/project/pyabf/
https://swharden.com/about/
https://shop.elsevier.com/books/guide-to-research-techniques-in-neuroscience/carter/978-0-12-818646-6
https://link.springer.com/book/10.1007/978-1-0716-2631-3
https://www.sciencedirect.com/book/9780128142103/introduction-to-electrophysiological-methods-and-instrumentation#book-info
https://academic.oup.com/book/25187
https://www.sciencedirect.com/book/9780122095511/the-laboratory-computer

CHAPTER
TWO

ELECTROPHYSIOLOGY DATA

Accessing electrophysiology records can be difficult, and working with them is often cumbersome, as they typically
require specific formats to be quickly accessible and usable. To make data more widely available, it is crucial to
develop not only open-access databases but also standardized file formats. Historically, data formats were tied to
the devices that generated them—often proprietary and incompatible with other systems. This fragmentation soon
became a barrier to scientific progress. In what follows, we first introduce common file formats, then present several
relevant databases, and finally show how to work with them in Python.

2.1

Types of electrophysiology recordings

Electrophysiology covers a wide range of recording techniques, each suited to different biological questions.
Here are the main categories:

Intracellular Recordings - Sharp electrode recordings: measure the membrane potential inside a single cell ©
Whole-cell patch clamp: provides detailed access to ionic currents, membrane potential, and synaptic inputs ®
Single-channel recordings: resolve the activity of individual ion channels.

Extracellular Recordings - Single-unit recordings: detect action potentials (“spikes”) from individual neurons
using fine electrodes ® Multi-unit recordings: capture spikes from small groups of neurons near the electrode tip
* Multi-electrode arrays (MEA): record from dozens to thousands of electrodes simultaneously across a neural
population.

Field Potential Recordings - Local field potentials (LFPs): measure summed synaptic activity and slower
fluctuations in a local region * ECoG (electrocorticography): records field potentials directly from the cortical
surface.

Non-Invasive Recordings - EEG (electroencephalography): scalp recordings of brain activity with high tem-
poral resolution * MEG (magnetoencephalography): detects magnetic fields generated by neuronal currents.

Other Specialized Methods - EMG (electromyography): records muscle activity ® ERG (electroretinography):
records retinal responses to light ¢ Patch-clamp in slices/in vivo: advanced combinations allowing intracellular
access in complex preparations.
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2.2 Common electrophysiology data formats

For-  Full Name Typical Use Open- Notes
mat ness
ABF Axon Binary File Patch-clamp and in- Pro- Very common in cellular electrophysiol-
(Molecular Devices) tracellular ~ recordings pri- ogy; ABF1 (older), ABF2 (newer).
(pCLAMP, Clampex) etary
IBW Igor Binary Wave (Igor Waveform storage and Pro- Widely used in physiology labs with Igor
Pro) analysis pri- Pro; supports multidimensional data.
etary
HEK/ Patchmaster Patch-clamp recordings Pro- Popular in Europe; rich metadata but
(DAT/PGF/PUF) (HEKA amplifiers) pri- tied to vendor software.
etary
CED Cambridge Electronic Extracellular recordings, Pro- Common for multi-electrode recordings
SON  Design (Spike2) spike trains pri- and stimulus protocols.
etary
WCP WinWCP File (Strath- Patch-clamp and voltage- Semi- Free Windows-only software; popular in
clyde) clamp recordings open teaching and some labs; less standard-
ized than ABF/HEKA.
NWB Neurodata Without  Sharing neurophysiology Open  Community-driven, based on HDFS;
Borders data (spikes, LFPs, imag- stan-  widely promoted for reproducibility and
ing) dard  FAIR data.
BIDS- Brain Imaging Data EEG, ECoG, iEEG Open Growing adoption; integrates with neu-
iEEG Structure (intracranial stan-  roimaging standards.
EEG extension) dard
MAT MATLAB File (.mat) Custom lab stor- Semi- Extremely common, but not standard-
age/analysis open ized for sharing.
HDFS5S Hierarchical Data For- Large, structured Open  Flexible backbone format; NWB is built
mat 5 datasets on HDFS.
EDF/1 European Data Format EEG, PSG, clinical neu- Open  Standard in sleep studies and EEG; sup-
/ BioSemi Data Format  rophysiology ported by many clinical systems.
CSV/1T Comma-/Tab- Generic export of time Open  Universally readable, but loses rich
separated Values series or metadata metadata and structure.
WAV  Waveform Audio File Audio-like exports of Open  Native Windows format; sometimes

(Windows)

signals/spike trains

used for stimulus or simplified data ex-
port.

2.3 Most used electrophysiology data formats

¢ ABF (Axon Binary File) - ABF is a proprietary binary format developed by Molecular Devices. It is widely
used for patch-clamp and intracellular recordings, especially in cellular electrophysiology research. ABF
files store both the raw electrophysiological signals and metadata, such as sampling rate, stimulus protocols,
and experimental parameters. Versions include ABF1 (older) and ABF2 (newer).

* NWB (Neurodata Without Borders) - NWB is an open, community-driven standard designed for sharing
and long-term storage of neurophysiology data. It is based on HDF5 and supports raw signals, metadata,
experimental design, stimuli, and derived data. NWB promotes reproducibility and FAIR principles, and is
increasingly adopted by labs worldwide.

« IBW (Igor Binary Wave) - IBW is the binary wave format used by Igor Pro software. It is popular for
waveform storage and analysis, particularly in physiology labs. IBW supports multi-dimensional data, an-
notations, and is often part of custom analysis pipelines. Despite being proprietary, it remains widely used
because of historical and workflow reasons.

10 Chapter 2. Electrophysiology data
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2.3.1 Summary table

Format Developer Proprietary  Free to use? Main Use Adoption

/ Open
ABF Originally Axon Propri- Reading libraries are Electrophysiology = Widely used in
(Axon Instruments —  etary (specs free (e.g., pyABF), (patch-clamp, labs with Molec-
Binary now Molecular partially but creating/using  voltage/current ular Devices
File) Devices available, ABF files requires recordings) equipment

but tied to pCLAMP, which is

pCLAMP) commercial
NWB Community- Fully open- Free (developed and Standardized Growing  adop-
(Neu- driven (Allen source and maintained openly on storage/sharing of tion in large-scale
rodata  Institute, HHMI community  GitHub) neuroscience data projects,  espe-
With- Janelia, Berke- standard (e-phys, imaging, cially for data
out ley Lab, INCF, behavioral, meta- sharing and FAIR
Bor- etc.) data) science
ders)
IBW WaveMetrics,  Propri- Requires Igor Pro General scientific Popular in
(Igor Inc. etary (commercial software). data analysis and biophysics,
Binary (closed Some third-party li- visualization neuroscience,
Wave) format, braries exist to read spectroscopy

documenta-  IBW for free

tion partly

available)
2.3. Most used electrophysiology data formats 11
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2.3.2 Companies and formats

Company HQ Main Products (Neu- Native Data Conversion/Notes
ronal EP) Formats
Molecular USA Patch-clamp amplifiers ABF (Axon Widely used in patch-clamp. Readable
Devices (Axon (Axopatch, Multi- Binary File): with AxoGraph, Clampfit. Python:
Instruments) Clamp), digitizers ABF1 (legacy), pyABF, Neo. Export to NWB possi-
(Digidata), pCLAMP ABF2 (current)  ble.
software
HEKA Ger- Patch-clamp amplifiers .dat/.pgf/.pul Proprietary binary; support  in
Elektronik many (EPC series), Patchmas- Neo. Conversion pipelines exist
(Harvard ter software for NWB/NIX.
Bioscience)
Multi Chan- Ger- Multi-electrode  arrays .mecd (pro- SDK/API for reading .mcd. .h5 is
nel Systems many (MEAs), in vitro & in prietary), .hS HDFS5 and integrates more easily. Neo
(MCS, Har- Vivo systems (newer systems) + NWB supported.
vard Bio-
science)
Blackrock USA Utah arrays, high-density NSx  (contin- Openly documented. MATLAB,
Neurotech neural recording for BCI  uous), NEV Python APIs. Supported in Neo.
(spike/event) Standard in BCI research.
Neuralynx USA In vivo extracellular NCS, NSE, ASCII headers + binary. Readers avail-
recording systems NEV, etc. able (MATLAB, Python). Supported
in Neo, can export to NWB.
Ripple Neuro  USA High-channel neural  Similar to MATLAB/Python SDK. Actively sup-
recording & stimulation Blackrock: NSx  ports NWB.
systems (BCI, clinical) / NEV
Tucker-Davis USA High-throughput record- .tsq/.tev/.sev  Proprietary binary. TDT SDK + Neo
Technologies ing, optogenetics, stimu- support. NWB export possible.
(TDT) lation
Intan Tech- USA Low-power amplifier .rhd/.rhs Binary with header metadata. In-
nologies chips &  headstages tan provides readers (C++, MATLAB,
(RHD, RHS series) Python). Neo + NWB supported.
Widely used in open-source rigs.
ADInstru- New PowerLab DAQ, .adicht Proprietary but supported by LabChart
ments Zeala LabChart software, (LabChart & APIs. Neo support available. Some
teaching/research physi- files) pipelines to NWB.
ology tools
Kerr Scientific New In vitro slice & tissue Exports via Less standardized — depends on DAQ
Instruments Zeala electrophysiology rigs DAQ hard- choice (often integrates with ADIn-
ware (often  struments).
LabChart, NI,
etc.)
12 Chapter 2. Electrophysiology data
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2.4 Databases

By the way, data really matter! You can look at the Wikipedia list of neuroscience databases. We will consider four
of them.

2.4.1 NLM Dataset Catalog
NLM Dataset Catalog is a catalog of biomedical datasets from various repositories, NIH National Library of Medecine
(NIH/NLM).

» The NLM Dataset Catalog is essentially a registry pointing to datasets, not a direct host.

* You'll usually get redirected to the actual host (sometimes PhysioNet, OpenNeuro, or institutional repositories).

* If the dataset is downloadable via URL, you can use requests or wget in Python to fetch the .abf files, then
open with pyabf.

* No standard Python API for the catalog itself, but you can scrape metadata via their JSON endpoints (if
provided per dataset).

2.4.2 Dryad

Dryad (DAta Archive for Neuroscience DIscovery) is an open data publishing platform and a community committed
to the open availability and routine re-use of all research data.

 Dryad datasets are hosted at datadryad.org.

* They expose a REST API (https://datadryad.org/api/v2/).

* You can query a DOI, get file download links, and then download with requests.
Examples of data sets:

* a dataset presenting electrophysiological properties from whole-cell patch clamped nucleus accumbens core
medium spiny neurons from male rats and female rats recorded in different estrous cycle phases.

* a dataset containing whole-cell electrophysiological recordings (patch-clamp recordings) from three cell types
in mice.

Example of usage:

import requests
import pyabf

doi = "10.5061/dryad.xxxxx" # replace with dataset DOI
r = requests.get (f"https://datadryad.org/api/v2/datasets/{doi}")
files = r.json () ["included"]

for £ in files:
if f["attributes"]["filename"].endswith(".abf"):
url = f["attributes"] ["downloadUrl"]
abf_data = requests.get (url)

with open(f["attributes"] ["filename"], "wb") as fh:
fh.write (abf_data.content)
abf = pyabf.ABF (f["attributes"]["filename"])

2.4. Databases 13
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2.4.3 Dandi Archive

Dandi Archive (Distributed Archive for Neuroscience Data Integration) is the BRAIN Initiative archive for publishing
and sharing neurophysiology data including electrophysiology, optophysiology, and behavioral time-series, and images
from immunostaining experiments.

¢ DANDI hosts primarily neurophysiology data in NWB (Neurodata Without Borders) format (link, not ABF.
* They have a Python client: dandi (link).
An example of data set:

¢ Patch-seq recordings from mouse visual cortex. Whole-cell Patch-seq recordings from neurons of the mouse
visual cortex from the Allen Institute for Brain Science, released in June 2020. The majority of cells in this
dataset are GABAergic interneurons, but there are also a small number of glutamatergic neurons from layer
2/3 of the mouse visual cortex.

Example of usage:

pip install dandi
dandi download DANDI:000003 # replace with dataset identifier

If the dataset includes . abf files (rare, usually NWB), you can load them directly with pyabf. More commonly,
you’d work with NWB using pynwb, not pyabf.

2.4.4 Zenodo

zenodo.org (named after Zenodotus, the first librarian of Alexandria) is an open-access research data repository
built and hosted by CERN (the European Organization for Nuclear Research), with support from the European
Commission.

» Zenodo provides a REST API: https://zenodo.org/api/.
» Each record has a DOI and you can list associated files.
Example of data sets:

* adata set of CA1 pyramidal cell recordings using an intact whole hippocampus preparation, including record-
ings of rebound firing (V2).

Example:

import requests
import pyabf

record_id = "1234567" # Zenodo record ID
r = requests.get (f"https://zenodo.org/api/records/{record_id}")
for £ in r.json()["files"]:
if f["key"].endswith(".abf"):

url = f["links"] ["self"]

abf_data = requests.get (url)

with open(f["key"], "wb") as fh:

fh.write (abf_data.content)
abf = pyabf.ABF (f["key"])

14 Chapter 2. Electrophysiology data
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2.5 Gateways with Python

Formats commonly used in electrophysiology (ABF, NBW, IBW) are not always straightforward to handle. Fortu-
nately, several Python libraries act as gateways to read and convert:

¢ PyNWRB is a Python package for working with NWB files (doc github).

e pyabf is a Python library for reading electrophysiology data from Axon Binary Format (ABF) files (github),
see also abf explorer, a simple graphical application for quickly viewing axon binary format (ABF).

o IBW (Igor Binary Wave) is a Python parser for IBW (.ibw) and Packed Experiment (.pxp) files written by
WaveMetrics’ IGOR Pro software (see igor2). IBW is a bit less active in Python.

As we already had a quick peep at above, several Python tools are available for working with records from these
databases, see Chapter Exploring records with pyabf for more details. Also in Chapter Exploring a database with csv
we present some tools and ideas to explore a database.

2.5. Gateways with Python 15
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CHAPTER
THREE

EXPLORING A DATABASE WITH csv

@ Important

Usually, directories of experimental records are produced by colleagues in the lab. It is essential that there is
ongoing discussion between the experimentalists and the people who will later analyze the data, such as data
scientists. If data scientists modify the structure of the records directory, it becomes much harder to maintain
this communication and can significantly slow down the process of data exploitation and analysis. Therefore,
following good practices for organizing and managing the data is crucial.

See Section “csv in the context of panda and csvkit” for an introduction to csv in the context with panda and
csvkit.

3.1 Building a csvfile

‘We consider a dataset in data/records_fake.

This dataset consists of a set of (empty) records compiled in 2024, from March 15 to June 26, by Joanna Danielewicz
at the Mathematical, Computational and Experimental lab, headed by Serafim Rodrigues at BCAM.

The directory structure is the same as in the real dataset, but the files are empty, since the original recordings are too
large. Later, we will work with selected real recordings.

In the data directory I have a subdirectory records_ fake that contains empty abf and at f files, the structure
is:

ltree -L 2 data/data_bcam_2024/records

data/data_bcam _2024/records

— 03.15

| Fc1

L— ¢2

— 03.20
L—c1
04.10

F— c1

F— c2\ immature
L— ¢3
05.07

— c1\ DG
L— c2\ bG
05.20

F— c1

F— c2

— c3

F— ca

T T T

(continues on next page)
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First we present somes good practices about records directory.

L— cs
05.23
F— c1
F— c2
— c3
L— c4
05.29
— c1
F— c2
L— ¢3\ immature
05.30

F— c1

L— c2
06.19

F— c1

L— c2
06.26
F— c1
F— c2

L— c3
L — README.md

T 1T T T

37 directories, 1 file

(continued from previous page)

3.2 Good practrices about records directory

3.2.1 Directory structure: flatten or not?

» Keep the hierarchy (date — cell — files).

It mirrors the experimental workflow (date of recording, then cell).

Easier to reason about provenance (“what did we do on May 307”).

Helps you separate sessions and avoid accidental filename collisions.

Flattening could be useful for scripts, but you can always create virtual flattening in Python (e.g., by walking
the directory tree). So I'd keep the hierarchy and let code do the flattening.

Recommendation: Keep the directory hierarchy. Use scripts to index/flatten when needed.

3.2.2 Metadata handling

* Do not rely only on filenames — they’re fragile and inconsistent.

 Best practice: keep a metadata table (CSV, TSV, JSON, YAML, or SQLite DB), eg. ametadata.csv

to store all experiment details.

— You can add or correct metadata later without touching raw files.

— Easy to query and filter in Python (e.g., with pandas).

— Prevents the need to rename files whenever metadata changes.

Recommendation: Maintain a single central metadata file (CSV for simplicity, or SQLite if the dataset grows large).

18
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3.2.3 README .md

Add a README . md in the data file that includes:
* Directory structure
¢ Naming conventions
 Protocol/temperature shorthand

¢ Instructions for using metadata

3.2.4 File Naming

» Keep original filenames from acquisition (ground truth).

¢ Do not overwrite raw files.

* If you want clean names, create symbolic links or derived copies like: cel1ID_date_protocol.abf,
eg. you can make a (flat) dir of symbolic links:

symlinks/

F— C21_05.30.abf
— C22_05.30.abf
F— C23_06.19.abf

3.2.5 Keep raw data read-only

* Protects raw data integrity — accidental edits, renames, or deletions won’t happen.
¢ Clear separation between:
— Raw data (immutable, read-only)
— Derived data / analysis results (reproducible, regeneratable)
» Works well with the principle: “never touch your raw data, always derive.”
 In multi-user setups (lab server, shared cluster), permissions protect against colleagues accidentally overwriting.
Things to keep in mind

* You may still want to add new files (new experiments) — so you don’t want to lock the whole records root
permanently. Instead, set read-only permissions per experiment once it’s finalized.

* If you ever need to move or reorganize, you'll have to re-enable write permissions (chmod u+w).

* A safer alternative:
— Keep raw records as read-only

— Mirror it to a version-controlled metadata database (metadata.csv or SQLite), which you can edit freely

3.3 Back to the case study

To make everything in ‘data/records_fake/’ read-only:

!chmod -R a-w data/data_bcam_2024/records
'ls -1 data/data_bcam_2024/records/*/*/* | head —-n 5

3.3. Back to the case study 19
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-r——r——r-— 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
~C1/2024_03_15_0000 IC steps 23.abf

-r——r——r-— 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
~C1/2024_03_15_0001 IC ramp 23.abf

-r——r——r-—— 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
~C1/2024_03_15_0002 IC sin 23.abf

-r——r——r-— 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/
~C1/2024_03_15_0003 VC ramp 23.abf

-r——r——-r-— 1 campillo staff 0 3 oct 20:59 data/data_bcam_2024/records/03.15/

~C1/2024_03_15_0004 IC ramp 25.abf
1ls: stdout: Undefined error: 0

Now everybody (owner, group, all) car read the files but cannot write (or execute), files can still be read and copied.
Still under MacOS with Finder you can make some damages, you can make them immutable:

lchflags -R uchg data/data_bcam_2024/records

Note the little lockers in Finder:

data_bcam_2024
records
0315

03.20

——
.
—
L
—
.
——
.
——
L

(Toundo: chflags —-R nouchg records)

© Tip
Best practices
» Keep raw data untouched.
» Keep raw data read-only once experiments are finalized.
e Track metadata in metadata.csv — symlinks are just for easier file access, not metadata storage.

* If necessary, use symlinks for convenience (clean naming, flat access).

3.4 Pandas DataFrame

pandas DataFrame (df) is far better than built-in Python tools like lists, dictionaries, or arrays for the following
reasons:

* Tabular structure built-in
— A DataFrame behaves like a table or spreadsheet: rows = records, columns = fields.
— You don’t have to manually manage parallel lists or nested dictionaries.

 Easy indexing and filtering: doing the same with lists/dicts would require loops and conditionals — much more
verbose

» Powerful aggregation & grouping: compute counts, averages, sums, or custom statistics without writing loops
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¢ Built-in handling of missing data

— Pandas understands NaN values automatically.

— Built-in functions handle missing data gracefully.

* Integration with plotting and analysis

¢ Easy I/O; Load/save CSV, Excel, SQL, JSON, and more with a single command.

See infra.

3.5 Back to the case study: the boring job !

This part is as necessary as it is boring ! From directory data/data_bcam_2024/records (which we
will not modify), we generate a metadata file ddata/data_bcam_2024/records_metadata.csvin CSV
format. The procedure is somewhat tricky and was developed step by step with the help of ChatGPT.

The final python script (not very informative) is data/data_bcam_2024/create_metadata.py.

lcd data/data_bcam_2024 && python3 create_metadata.py

metadata_file =

Step
Step
Step
Step
Step
Step
Step

Step

8:
Step 9:

~ o U W N

column
column
column
column
column
column

date

exp_nb

columns cell_id, file_path,

comments
protocol
prot-opt

tp

Final CSV saved to

records_metadata.csv
records_metadata_clean.csv
records_metadata_bad.csv

refine comments
separate bad records

file_name

that contains references
that contains references
that contains references

records_metadata.csv = records_metadata_clean.csv +

import pandas as pd

df = pd.read_csv(metadata_file)

df .head (1000)

Sw N e O

639
640
641
642
643

w N = O

exp_nb cell_id

1

g w N

655
656
657
658
659

Cc1
C1l
C1
Cc1
Cc1l
c27
c27
c27

c27
c27

# load the metadata

"data/data_bcam_2024/records_metadata_clean.csv"

to all records
to all clean records
to all bad records

records_metadata_bad.csv

# display the first few rows

date protocol prot-opt

2024-03-15
2024-03-15
2024-03-15
2024-03-15
2024-03-15

2024-06-26
2024-06-26
2024-06-26
2024-06-26
2024-06-26

03.15/C1/2024_03_15_0000 IC steps 23.
03.15/C1/2024_03_15_0001 IC ramp 23.
03.15/C1/2024_03_15_0002 IC sin 23.
03.15/C1/2024_03_15_0003 VC ramp 23.

23 o
23.
23
23
25.
34.
34.
34.
37.
37 o

tp comments

0

o O O O

O O O o O -

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

file_name

2024_03_15_0000 IC steps 23.abf
2024_03_15_0001 IC ramp 23.abf
2024_03_15_0002 IC sin 23.abf

IC steps
IC ramp
IC sin
vC ramp
IC ramp
IC ramp
IC sin
vC ramp
IC ramp
vC ramp

file_path

abf

abf

abf

abf

2024_03_15_0003 VC ramp 23.abf

(continues on next page)

3.5. Back to the case study: the boring job !
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(continued from previous page)
4 03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf

639 06.26/C3/2024_06_26_0044 IC ramp 34.abf 2024_06_26_0044 IC ramp 34.abf
640 06.26/C3/2024_06_26_0045 IC sin 34.abf 2024_06_26_0045 IC sin 34.abf
641 06.26/C3/2024_06_26_0046 VC ramp 34.abf 2024_06_26_0046 VC ramp 34.abf
642 06.26/C3/2024_06_26_0047 IC ramp 37.abf 2024_06_26_0047 IC ramp 37.abf
643 06.26/C3/2024_06_26_0048 VC ramp 37.abf 2024_06_26_0048 VC ramp 37.abf

[644 rows x 9 columns]

We end up with:

¢ acomplete consolidated CSV (records_metadata . csv) with all metadata columns for downstream anal-
ysis
« the subset of “clean” records references (records_metadata_clean.csv)

* the subset of “bad” records references (records_metadata_bad.csv)

and records_metadata.csv = records_metadata_clean.csv U records_metadata_bad.
csv

3.6 Exploring the metadata

3.7 First we read the csv and create a dataframe object:

The . info () method prints a concise summary of the DataFrame. Here’s what it shows:
* Index range — e.g. Rangelndex: 100 entries, 0 to 99
e Number of columns and their names
* Column data types (e.g. int64, float64, object for strings, datetime64, etc.)
¢ Number of non-null values per column (useful for spotting missing data)

* Memory usage of the DataFrame

df.info ()
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 644 entries, 0 to 643
Data columns (total 9 columns):

# Column Non-Null Count Dtype

0 exp_nb 644 non—-null int64

1 cell_id 644 non-null object
2 date 644 non-null object
3 protocol 372 non-null object
4 prot-opt 344 non-null object
5 tp 635 non-null float64
6 comments 19 non-null object
7 file_path 644 non-null object
8 file_name 644 non-null object

dtypes: float64 (1), int64(1l), object(7)
memory usage: 45.4+ KB

import pandas as pd

# Load the metadata
(continues on next page)
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df = pd.read_csv (metadata_file)
# Display the first few rows
df .head()

exp_nb cell_id date protocol prot-opt

0 1 Cl 2024-03-15 IcC steps
1 2 Cl 2024-03-15 IC ramp
2 3 Cl 2024-03-15 IC sin
3 4 Cl 2024-03-15 vC ramp
4 5 Cl 2024-03-15 IC ramp
file_path

S w N O

# Show unique protocols nicely

print ("Unique protocols:", df['protocol'].unique ())
# Count files per protocol
protocol_counts = df['protocol'].value_counts()

print ("\nFiles per protocol:")

print (protocol_counts.to_string())

# Count files per day

day_counts = df['date'].value_counts ()
print ("\nFiles per day:")

print (day_counts.to_string())

Unique protocols: ['IC' 'VC' 'DC' nan]

Files per protocol:

protocol
IC 213
vC 130
DC 29

Files per day:

date

2024-05-23 126
2024-05-20 96
2024-05-07 70
2024-05-30 68
2024-03-15 67
2024-05-29 63
2024-04-10 61
2024-06-26 49
2024-06-19 24
2024-03-20 20

We can also use pandas styling (works in Jupyter Notebook):

# Count files per protocol

df [ '"protocol'].value_counts () .sort_index () .to_frame () .style.set_caption("Files.

wper Protocol") .format (" ")

<pandas.io.formats.style.Styler at 0x128772£50>

# Count files per day

23.
28 o
23.
23.
23 o

tp comments

0

o O O O

NaN
NaN
NaN
NaN
NaN

file_name

03.15/C1/2024_03_15_0000 IC steps 23.abf 2024_03_15_0000 IC steps 23.abf
03.15/C1/2024_03_15_0001 IC ramp 23.abf 2024_03_15_0001 IC ramp 23.abf
03.15/C1/2024_03_15_0002 IC sin 23.abf 2024_03_15_0002 IC sin 23.abf
03.15/C1/2024_03_15_0003 VC ramp 23.abf 2024_03_15_0003 VC ramp 23.abf
03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf

(continued from previous page)

(continues on next page)

3.7. First we read the csv and create a dataframe object:
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(continued from previous page)

df['date'] .value_counts () .sort_index () .to_frame () .style.set_caption("Files per Day

") . format ("

vl)

<pandas.io.formats.style.Styler at 0x128783al10>

Now we propose a snippet that generates two side-by-side bar charts from the df dataframe: The result is a quick
visual summary of how your dataset is distributed by protocol type and by date. Do you want me to show you how
to make the x-axis labels more readable (e.g. rotating dates so they don’t overlap)?

import matplotlib.pyplot as plt

# Create subplots: 1 row, 2 columns

fig, axes

plt.subplots(l, 2, figsize=(12,

# Files per protocol
protocol_counts = df['protocol'].value_counts ()
protocol_counts.plot (
kind="bar',
color="skyblue',
edgecolor="'black',
ax=axes|[0],
title='Files per Protocol'

)

axes|[0] .set_ylabel ('Number of files')

# Files per day

df['date'] .value_counts () .sort_index ()

day_counts.plot (
kind='bar',
color="'lightgreen',
edgecolor="'black',

day_counts

ax=axes|[1],
title='Files per Day'

)

axes|[1] .set_ylabel ('Number of files')

plt.tight_layout ()

5

)) # adjust figsize as needed

plt.show ()
Files per Protocol Files per Day
200 4 1204
175 it
o 150 -
g 2 e
& 125 s
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a B o 604
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204 (}
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3.8 Filtering

3.8.1 All dead cells experiments

# Filter rows where comments contain

dead_cells

'dead'

= df[df['comments'].str.contains('dead',

# Display the result
dead_cells

66
627

66
627

66
627

exp_nb cell_id

67
643

C2
C26

2024_03_15_0066 IC ramp 38 dead.abf

3.8.2 All experiment of the day ‘2024-05-29’

# Filter rows for a specific day
df [df [ 'date']

day_data =

# Display the result
day_data

440
441
442
443
444
498
499
500

501
502

440
441
442
443
444
498
499
500
501
502

exp_nb cell_id

date protocol prot-opt
2024-03-15 IcC ramp 38
2024-06-26 DC NaN 25
file_path \
03.15/C2/2024_03_15_0066 IC ramp 38 dead.abf
06.26/C2/2024_06_26_0032 25 DC dead.abf
file_name
2024_06_26_0032 25 DC dead.abf
== '2024-05-29"]
date protocol prot-opt
2024-05-29 Ic ramp 25.
2024-05-29 IC ramp 28.
2024-05-29 IcC ramp 31.
2024-05-29 Ic ramp 34.
2024-05-29 IC ramp 37.
2024-05-29 NaN NaN 32.
2024-05-29 NaN NaN 33.
2024-05-29 NaN NaN 34.
2024-05-29 NaN NaN 35.
2024-05-29 NaN NaN 36.
file_path
.29 C1 IC ramp 25.atf 05.29 C1
.29 C1 IC ramp 28.atf 05.29 C1
.29 C1 IC ramp 31l.atf 05.29 C1
.29 C1 IC ramp 34.atf 05.29 C1
.29 C1 IC ramp 37.atf 05.29 C1
2/2024_05_29_0032.abf 2024

05
05

05

449
450
451
452
453
507
508
509
510
511

05.
08¢
08
05
08¢

.29/C3
.29/C3
05
.29/C3

29/C3

Cc18
c18
Cc18
Cc18
c18
C19
Cc20
C20
Cc20
Cc20

29/C1/05
29/C1/05
29/C1/05

.29/C1/05

29/C1/05

05.29/C

immature/2024_05_29_0033.abf
immature/2024_05_29_0034.abf
immature/2024_05_29_0035.abf
immature/2024_05_29_0036.abf

[63 rows x 9 columns]

(case—-insensitive)

case=False, na=False)]

tp
.0
.0

o o o o od

O O O O O -

IC
IC
IC
IC
IC

05

comments \
dead
dead

comments \
NaN
NaN
NaN
NaN
NaN
NaN

immature

immature

immature
immature

file_name
ramp 25.atf
ramp 28.atf
ramp 31l.atf
ramp 34.atf
ramp 37.atf

_29_0032.abf

2024_05_29_0033.abf
2024_05_29_0034.abf
2024_05_29_0035.abf
2024_05_29_0036.abf

3.8. Filtering
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3.8.3 All IC ramp

# Filter rows with protocol 'IC' and protocol_option 'ramp'
ic_ramp_cells = df[(df['protocol'] == 'IC') & (df['prot-opt'] == 'ramp')]

# Display the result
ic_ramp_cells

exp_nb cell_id date protocol prot-opt tp comments \
1 2 Cl 2024-03-15 IC ramp 23.0 NaN
4 5 Cl 2024-03-15 IcC ramp 25.0 NaN
7 8 Cl 2024-03-15 IC ramp 27.0 NaN
10 11 Cl 2024-03-15 IC ramp 29.0 NaN
13 14 Cl 2024-03-15 Ic ramp 31.0 NaN
629 645 C27 2024-06-26 IC ramp 25.0 NaN
634 650 C27 2024-06-26 IC ramp 28.0 NaN
636 652 C27 2024-06-26 IC ramp 31.0 NaN
639 655 C27 2024-06-26 IC ramp 34.0 NaN
642 658 C27 2024-06-26 IC ramp 37.0 NaN
file_path file_name
1 03.15/C1/2024_03_15_0001 IC ramp 23.abf 2024_03_15_0001 IC ramp 23.abf
4 03.15/C1/2024_03_15_0004 IC ramp 25.abf 2024_03_15_0004 IC ramp 25.abf
7 03.15/C1/2024_03_15_0007 IC ramp 27.abf 2024_03_15_0007 IC ramp 27.abf

10 03.15/C1/2024_03_15_0010 IC ramp 29.abf 2024_03_15_0010 IC ramp 29.abf
13 03.15/C1/2024_03_15_0013 IC ramp 31l.abf 2024_03_15_0013 IC ramp 31l.abf

629 06.26/C3/2024_06_26_0034 IC ramp 25.abf 2024_06_26_0034 IC ramp 25.abf
634 06.26/C3/2024_06_26_0039 IC ramp 28.abf 2024_06_26_0039 IC ramp 28.abf
636 06.26/C3/2024_06_26_0041 IC ramp 31.abf 2024_06_26_0041 IC ramp 31.abf
639 06.26/C3/2024_06_26_0044 IC ramp 34.abf 2024_06_26_0044 IC ramp 34.abf
642 06.26/C3/2024_06_26_0047 IC ramp 37.abf 2024_06_26_0047 IC ramp 37.abf

[136 rows x 9 columns]

3.9 csvkit the command-line Swiss Army knife

OK, notebooks are great, but when navigating through data directories, you may come across a CSV file—or, if you're
less lucky, an Excel file. Don’t panic: there’s a handy tool for that: csvkit, it is a (nice) suite of command-line tools
for converting to and working with CSV, the king of tabular file formats. See Section “csvkit the command-line Swiss
Army knife” and/or the tutorial.

Look at column names:

lcsvecut —-n  data/data_bcam_2024/records_metadata_clean.csv

exp_nb
cell_id
date
protocol
prot-opt
tp
comments
file_path
file_name

O 00 J o U WN -

Pretty print of the (head of) columns 2,3,8:
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lcsvcut —-c 2,3,8 data/data_bcam_2024/records_metadata_clean.csv |

| cell_id | date | file_path

| === | ————————= |

| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0000
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0001
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0002
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0003
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0004
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0005
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0006
| C1 | 2024-03-15 | 03.15/C1/2024_03_15_0007

Stats on “date” and “tp:

steps 23.abf
ramp 23.abf
sin 23.abf

ramp 23.abf
ramp 25.abf
sin 25.abf

ramp 25.abf
ramp 27.abf

lcsvcut -c date,tp data/data_bcam_2024/records_metadata_clean.csv |

. o

2o

Row count:

"date"

Type of data:

Contains null values:

Non-null values:
Unique values:
Smallest wvalue:
Largest value:

Most common values:

"tp"

Type of data:

Contains null values:

Non-null values:
Unique values:
Smallest value:
Largest value:

Sum:

Mean:

Median:

StDev:

Most decimal places:
Most common values:

644

Date

False

644

10
2024-03-15
2024-06-26
2024-05-23
2024-05-20
2024-05-07
2024-05-30
2024-03-15

(126x)
(96x)

(70x
(68x
(67x

Number
True
635
73
OI
69,
18 044,5
28,417
28,
12,181

1
25,
34,
31,
28,
40,

(96x)
(66x%)
(50x%)
(45x)
(33x%)

(excluded from calculations)

csvlook |

head

csvstat

Show a nice table of all files where “prot-opt” is steps, including only the “cell_id”, “protocol”, “prot-opt”, and
“file_name” columns:

lcsvcut -c cell_id,protocol,prot-opt, file_name data/data_bcam_2024/records_

metadata_clean.csv | csvgrep —-c prot-opt -m steps
| cell_id | protocol | prot-opt | file_name
| —m—m | e | ———mm- \
| C1 | IC | steps

csvlook

| 2024_03_15_0000 IC steps 23.abf

(continues on next page)

3.9. csvkit the command-line Swiss Army knife
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(continued from previous page)

| C1 | IC | steps | 2024_03_15_0018 IC steps 34.abf |
| C2 | IC | steps | 2024_03_15_0036 IC steps 23.abf |
| C3 | IC | steps | 2024_03_20_0007 IC square steps 38.abf |
| C23 | IC | steps | 2024_06_19_0000 IC steps 25.abf |
| C23 | IC | steps | 2024_06_19_0009 IC steps 34.abf |
| C24 | IC | steps | 2024_06_19_0014 IC steps 25.abf |
| C25 | IC | steps | 2024_06_26_0000 IC steps 25.abf |
| C25 | IC | steps | 2024_06_26_0016 IC steps 34.abf |
| C25 | IC | steps | 2024_06_26_0022 IC steps 40.abf |
| C26 | IC | steps | 2024_06_26_0028 IC steps 25.abf |
| Cc27 | IC | steps | 2024_06_26_0033 IC steps 25.abf |
| Cc27 | IC | steps | 2024_06_26_0043 IC steps 34.abf |

You can pipe all the line commands. For example, get cell_id and file_name for all IC steps:

!'bash -c "csvgrep -c protocol -m IC data/data_bcam_2024/records_metadata_clean.

“CSV H

| csvgrep -c prot-opt -m steps \
| csvcut —-c cell_id, file_name \
| csvlook"

| cell_id | file_name

Cc1 2024_03_15_0000 IC steps 23.abf
Cc1 2024_03_15_0018 IC steps 34.abf
C2 2024_03_15_0036 IC steps 23.abf
C3 2024_03_20_0007 IC square steps 38.abf
c23 2024_06_19_0000 IC steps 25.abf
c23 2024_06_19_0009 IC steps 34.abf

| \ \
| \ \
| \ \
| \ \
| \ \
| \ \
| C24 | 2024_06_19_0014 IC steps 25.abf |
| \ \
| \ \
| \ \
| \ \
| \ \
| \ \

Cc25 2024_06_26_0000 IC steps 25.abf
Cc25 2024_06_26_0016 IC steps 34.abf
C25 2024_06_26_0022 IC steps 40.abf
C26 2024_06_26_0028 IC steps 25.abf
c27 2024_06_26_0033 IC steps 25.abf
c27 2024_06_26_0043 IC steps 34.abf

(bash —cis a way to tell Bash to execute a command string as if you typed it directly in a terminal)
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CHAPTER
FOUR

EXPLORING RECORDS WITH PYABF

4.1 Using External Python Packages

We assume that the correct Python environment is already set up; see Section “Setting Up the Conda Virtual Environ-
ment for This Project” for details.

Let’s import the external libraries needed to work with the notebook:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt
import matplotlib as mpl

import seaborn as sns

import pyabf

print (f"numpy: {np.__version__}")
print (f"matplotlib: {matplotlib.__version__}")
print (f"seaborn: {sns.__version__}")

(

print (f"pyabf: {pyabf.__version__}")

numpy: 1.26.4
matplotlib: 3.8.4
seaborn: 0.12.2
pyabf: 2.3.8

4.2 pyABF on the net

The pyABF library was created by Scott Harden. Scott Harden has made pyABF available as an open-source library,
aiming to simplify the process of working with ABF files in Python, making it easier for researchers to analyze and
visualize their data. You can find more about pyABF and its documentation on his website:

* a(good) tutorial by [Scott W Harden]
* pyABF - A simple Python interface for Axon Binary Format ABF files, with git repository
¢ in Python Package Index pypi
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4.3 Exploring abf files

This first notebook aims to demonstrate how to analyze electrophysiological recordings from a single cell by:
 Extracting basic characteristics of the recorded signals.

* Plotting, for each recording trial (sweep, see below), the evolution of the membrane potential (voltage) and, if
applicable, the injected current.

We consider abf files contained in the data directory data/data_patch_clamp_bcam/records:

from pathlib import Path

records_dir = Path("data/data_patch_clamp_bcam/records")

abf_files = list (records_dir.rglob("*.abf")) # recursive glob

print ("the directory ", records_dir, " contains ", len(abf_files)," abf files")

the directory data/data_patch_clamp_bcam/records contains 63 abf files

We focus on specific records:

file_path = "data/data_patch_clamp_bcam/records/2024_06/06.26/C2/2024_06_26_0028.
sabf"

4.3.1 abf files and pyabf library

ABF File Overview

An ABF (Axon Binary Format) file is a proprietary file format developed by Axon Instruments (now part of Molec-
ular Devices) to store electrophysiological data from experiments. ABF files are commonly used to save data from
experiments like patch-clamp recordings, where researchers measure electrical signals from biological systems (such
as neurons or muscle cells). These files can store a variety of information, including:

» Data Traces: Time series data for one or more channels, representing signals such as voltage or current.

* Metadata: Information about the experiment, including settings for the recording, such as sampling rate, ex-
periment type, and device configuration.

* Multiple Sweeps: An ABF file can contain multiple sweeps (individual trials or experimental runs), which may
differ in parameters or conditions.

The ABF format is binary, making it efficient for large datasets, but it is not easily readable without specialized
software or libraries.

4.3.2 pyabf Library

The pyabf library is a Python package designed to facilitate working with ABF files. It provides an easy-to-use
interface to read and manipulate data stored in ABF files. The library makes it simpler for researchers to extract
relevant information from ABEF files, without having to manually parse the binary data.

Key Features of pyabf:
1. Load ABEF Files: Load an ABF file into memory and provide access to its data.
2. Access Data Traces: Extract time-series data, such as voltage and current traces (from ADC channels).
3. Multiple Sweep Support: Handle multiple sweeps (individual experimental runs) within a single ABF file.
4. Extract Metadata: Retrieve metadata like channel names, experiment parameters, and other settings.
5. Sweep Navigation: Select and navigate through multiple sweeps (trials) and analyze their data individually.

Common Functions in pyabf:
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e ABF (file_path): Initializes an ABF object from a given file path, loading the data into memory.
* setSweep (sweep_index) : Selects a specific sweep (experimental run) by its index.

* sweepY: Extracts the voltage (or other signal) data for the current sweep.

* sweepX: Extracts the time vector for the current sweep.

¢ sweepC: Extracts the command input (if available) for the current sweep.

* adcNames: List of ADC channel names.

¢ dacNames: List of DAC channel names.

4.3.3 Basics about abf objects

Where we import the pyab f package and load a record file:

abf = pyabf.ABF (file_path) # we load it
print (abf) # record characteristics

ABF (v2.9) with 2 channels (mV, pA), sampled at 10.0 kHz, containing 14 sweeps, .
~having no tags, with a total length of 2.35 minutes, recorded with protocol
“"IV-DG".

Here abf = pyabf.ABF (file_path) creates an abf object that have:
« attributes: data stored in the object, and

» methods: functions that belong to an object and can be called to perform actions

Atributes

We can print more attributes:

print
print (f"{'File Version:':>20 abf.abfVersionString /")

f"{'File Path:':>20 abf.abfFilePath/")

(

(
print (f"{'Sampling Rate:':>20 abf.dataRate/ Hz")
print (f"{'Total Sweeps:':>20 abf.sweepCount /")
print (£"{'ADC Channels:':>20 abf.adcNames ")
print (f"{'DAC Channels:':>20 abf.dacNames ")
print (f"{'Channel Units:':>20 abf.sweepUnitsY ")

(

print (f"{'Experiment Date:':>20 abf.abfDateTime ")

File Path: /Users/campillo/Documents/0O-git.nosync/data-science-spikes/
~data/data_patch_clamp_bcam/records/2024_06/06.26/C2/2024_06_26_0028.abf

File Version: 2.9.0.0

Sampling Rate: 10000 Hz

Total Sweeps: 14

ADC Channels: ['IN O0', "IN 1']

DAC Channels: ['OUT 0', 'OUT 1']
Channel Units: mV

Experiment Date: 2024-06-26 17:23:16.253000
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Methods

You can list all the methods of an abf object with print (abf.__dict__ ).

methods = [method for method in dir (abf)
snot method.startswith("__")]
print ("\n".Jjoin (methods))

_dtype
_getAdcNameAndUnits
_getDacNameAndUnits
_ide_helper
_loadAndScaleData
_makeAdditionalVariables
_readHeadersV1
_readHeadersV2
getAllXs

getAllYs
headerLaunch
launchInClampFit
saveABF1

setSweep

sweepD

You have private methods (Prefixed with _), and:

if callable(getattr (abf, method)) and.

e getAllXs (): Returns all time points (X-values) for every sweep, useful for plotting.

e getAllYs (): Returns all recorded signal values (Y-values) for every sweep.

* headerLaunch () : Likely a utility function for debugging or inspecting header information.

e launchInClampFit (): Opens the ABF file in ClampFit, a software from Molecular Devices used for

electrophysiology data analysis.

* saveABF1 (): Converts and saves the ABF file in version 1 format, which is older but sometimes required

for compatibility.

* setSweep (sweeplIndex): Sets the current sweep (i.e., trial or recording segment) to a given index for

further processing.

* sweepD: Likely an attribute or method that provides the time duration of a sweep.

Of course the main parts of the sweep are the recorded signal and the command input:

# Print voltage trace
print (£"

(recorded signal)
'Voltage Trace (mV):':>25
# Print command input
print (£"

(if available)
'Command Input (mV):':>25

Voltage Trace
~6851]
Command Input

(mV) :

(mv): [0. 0. O.

[-65.4175 -65.4175 -65.4236

abf.sweepY /")

abf.sweepC/")

-64.6851 -64.6851 —-64.
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4.3.4 Basic abf file exploration
Main abf attributes and methods

The ab £ object contains various attributes and methods that allow you to access metadata and data from the .abf file.
Here are some useful attributes and how to call them:

print ("List of sweep indexes:", ", ".join(map(str, abf.sweeplist)))
List of sweep indexes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

sweep_index = 0 # Choose a specific sweep (e.g., first sweep —> index 0)
abf.setSweep (sweep_index)

print (f"{'Voltage Trace (mV):':>25} {abf.sweepY}") # Print voltage trace.
o (recorded signal)

print (£"{'Command Input (mV):':>25} {abf.sweepC}") # Print command input (if.
savailable)

print (f" {'Recorded Channels:':>25} {abf.adcNames}") # Check all available ADC.
schannels (recorded signals)

print (£"{'Command Channels:':>25} {abf.dacNames}") # Check DAC channels (command.

sinput signals)

Voltage Trace (mV): [-65.4175 -65.4175 -65.4236 ... —-64.6851 -64.6851 -64.
-6851]
Command Input (mVv): [0. 0. 0. ... 0. 0. 0.]
Recorded Channels: ['IN O', 'IN 1']
Command Channels: ['OUT 0', 'OUT 1']

Some statistics of 1 sweep

Here, we have selected sweep_index = 0, representing the first sweep in the ABF file. We then compute some
basic statistics of the corresponding voltage trace, such as the mean, median, min, max, standard deviation, and range
of the signal:

data = abf.sweepY # The voltage trace for the specific swwep

stats = {

"Mean (mV)": np.mean(data),

"Median (mV)": np.median (data),

"Min (mV)": np.min(data),

"Max (mV)": np.max(data),

"Std Dev (mV)": np.std(data),

"Range (mV)": np.ptp(data), # Max — Min
}

print ("\nVoltage Trace Statistics:")
for key, value in stats.items():
print (£"/key:>20}: {value:.3f}")

Voltage Trace Statistics:
Mean (mV): —-81.502
Median (mV): —-91.797
Min (mV): —-93.097
Max (mV): —-64.545
Std Dev (mV): 12.916
Range (mV): 28.552
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4.4 Plots

4.4.1 Plotting the voltage trace distribution

%config InlineBackend.figure_format = 'retina'

this configuration, known as the inline backend, helps achieve a balance between good visual quality and manageable
file size, see Section Jupyter backends.

# to avoid warning from Seaborn internally calling a Pandas option

# (mode.use_inf_as_na) that has been deprecated in pandas > 2.1.

import warnings # needed for filterwarnings

warnings.filterwarnings ("ignore", category=FutureWarning, module="seaborn")

mpl.rcParams|['figure.figsize'] = (6, 3)

# Create a figure with two subplots (1 row, 2 columns), sharing x—-axis
fig, axes = plt.subplots(l, 2, sharex=True)

# Plot histogram on the first subplot

axes[0] .hist (data, bins=50, edgecolor='black', alpha=0.7)
axes[0] .set_xlabel ("Voltage (mV)")

axes|[0] .set_ylabel ("Frequency")

axes[0] .set_title("Voltage Trace Distribution")

axes[0] .grid (True)

# Plot KDE on the second subplot

sns.kdeplot (data, bw_adjust=0.3, fill=True, color="b", alpha=0.5, ax=axes[l])
axes|[1l] .set_xlabel ("Voltage (mV)")

axes[1l] .set_ylabel ("Density")

axes([1l].set_title("Voltage Trace Density")

axes|[1] .grid (True)

# Adjust layout
plt.tight_layout ()

1000 + 0.10 -

plt.show ()
Voltage Trace Distribution Voltage Trace Density
3000 1 |
I 0.30 1
2500 l
I 0.25 +
& 2000 A I
2 I 2 0.20 A
S 1500 i 2 I
g I I & 0.15 1 I
[V
0 L J— 0.00 Jr—v——vl

-90 -80 -70 -90 -80 -70
Voltage (mV) Voltage (mV)
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4.4.2 Plotting one sweep with input current

color_adc = "CO"

color_dac = "C3"

my_lw = 0.8
mpl.rcParams|'figure.figsize'] = (6, 4)

# Create the figure
fig, axl = plt.subplots/()

# Plot the recorded curve (ADC) on the left axis

axl.plot (abf.sweepX, abf.sweepY, color=color_adc, lw=my_lw, label="ADC waveform")
axl.set_xlabel (abf.sweepLabelX)

axl.set_ylabel (abf.sweeplLabelY, color=color_adc)

axl.tick_params (axis='y', labelcolor=color_adc)

# Create a second y—-axis for the control curve (DAC)

ax2 = axl.twinx ()

ax2.plot (abf.sweepX, abf.sweepC, color=color_dac, lw=my_1lw,label="DAC waveform")
ax2.set_ylabel (abf.sweeplabelC, color=color_dac)

ax2.tick_params (axis='y', labelcolor=color_dac)

# Improve the layout
fig.tight_layout ()

plt.show ()
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let put that last plotting in a function plot_abf_sweep
from utils.plots import plot_abf_ sweep

help (plot_abf_sweep) # help/info for the function plot_abf sweep

Help on function plot_abf_sweep in module utils.plots:

plot_abf_sweep (abf, sweep=0, color_adc='C0', color_dac='C3', 1lw=0.8)
Plot a single sweep from an ABF file with ADC on the left y-axis
and DAC on the right y-axis.

Parameters:

(continues on next page)
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(continued from previous page)

abf : pyabf.ABF
The ABF object.

sweep : int

Sweep number to plot (default 0).
color_adc : str

Color for the ADC waveform (default "CO").
color_dac : str

Color for the DAC waveform (default "C3").
1lw : float

Line width (default 0.8).

plot_abf_sweep? gives the Signature of the function, so you can see the parameters and defaults, and the

(73228 [732LH]

Docstring of the function (ie., everything inside the “” ... in the function)

4.4.3 Plotting all sweeps

# plot every sweep (with vertical offset)
for sweepNumber in abf.sweeplList:
abf.setSweep (sweepNumber)
offset = 140*sweepNumber
plt.plot (abf.sweepX, abf.sweepY+offset, color=color_adc, lw=my_1lw)

# decorate the plot

plt.gca() .get_yaxis () .set_visible (False) # hide Y axis
plt.xlabel (abf.sweepLabelX)

plt.show ()

0.0 0.2 0.4 0.6 0.8 1.0
Time (seconds)

4.4.4 Plotting all sweeps with all inputs
We can improve the previous plot, see the python script utils/plots.py:
from utils.plots import plot_abf_ traces_with_scalebar

fig, axl, ax2 = plot_abf_traces_with_scalebar (abf)
plt.show ()
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Another possibility:
from utils.plots import plot_abf_ sweeps_with_legend
fig, (axl, ax2) = plot_abf_sweeps_with_legend/(

abf, legend_loc='upper left', legend_bbox=(0.8, 0.87), legend_pad=0
)

plt.show ()
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CHAPTER
FIVE

INSTALLING PYTHON AND SOME TOOLS

5.1 Main Python distributions for data sciences

When starting with Python for data science, it’s important to know the main distributions you can use. These distri-
butions include Python itself, plus tools to manage packages and environments. Here’s an overview that works across
macOS, Linux, and Windows.

5.1.1 System Python

¢ Many operating systems come with Python pre-installed:

— macOS and most Linux distributions include Python.

— Windows does not come with Python pre-installed (you need to download it from Python.org).
* Usually an older version (e.g., Python 3.8 or 3.9).

* Good for simple scripts, but installing additional packages may conflict with system tools.

5.1.2 Official Python from Python.org

 The official Python distribution is available at python.org.
¢ Works on macOS, Linux, and Windows.

* You can manually install any additional data science packages (e.g., numpy, pandas, matplotlib) using
pip.

* Lightweight and cross-platform, but you need to manage dependencies yourself.

5.1.3 Anaconda

« A full Python distribution for scientific computing and data science.

* Includes:
— Python itself
— Hundreds of pre-installed libraries (numpy, pandas, matplotlib, scipy, etc.)
— Jupyter Notebook / JupyterLab

¢ Works on macOS, Linux, and Windows.

¢ Large download (~3 GB), but everything is ready-to-use.

* Good choice if you want a complete environment for data science without installing each library manually.
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5.1.4 Miniconda

* A minimal version of Anaconda, including only Python + the conda package manager.
* You install only the packages you need.

¢ Works on macOS, Linux, and Windows.

 Lightweight, flexible, and suitable for reproducible environments.

» Often preferred for creating isolated Python environments per project.

5.1.5 Platform-Specific Package Managers (optional)

¢ macOS: Homebrew can install Python (brew install python@3.13).

e Linux: System package managers like apt (Debian/Ubuntu) or dnf/yum (Fedora/CentOS) can install
Python.

* Windows: Chocolatey can install Python (choco install python) if you prefer command-line instal-
lation.

/\ These install system-wide Python, not isolated environments, so careful with package conflicts.

Mac users: Homebrew is a great tool to install system software on macOS, but it’s generally not recommended to
use brew-installed Python for data science projects. Why? Because brew installs Python system-wide, which can
conflict with project-specific environments like conda or venv. For isolated, reproducible Python environments,
prefer Miniconda or Anaconda instead.

5.1.6 Summary Table

Distribution Platforms Main Feature Notes
System Python macOS/Linux Pre-installed Might be old; not isolated
Python.org ma- Official Python Lightweight; manual package management
cOS/Linux/Windo
Anaconda ma- Full scientific  Large; ready-to-use
cOS/Linux/Windo' stack
Miniconda ma- Minimal + conda  Lightweight; flexible
cOS/Linux/Windo'
Homebrew / apt / dnf / ma- System package Installs Python and other software system-
Chocolatey cOS/Linux/Windo' manager wide; not isolated

This gives you a clear overview of the main Python distributions you can use for data science, regardless of your
operating system. Installation instructions and environment setup can be covered later.

Important

= We will therefore focus on the Anaconda solution
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5.2 Installing Anaconda and Miniconda

5.2.1 Installing Anaconda

macOS: Go to the Anaconda Downloads page, download the macOS installer (Graphical or command-line), open
the . pkg file, and follow the instructions. Open a terminal and verify the installation:

[conda —-—version ]

Linux: Download the Linux installer from Anaconda Downloads. Open a terminal and run:

[bash ~/Downloads/Anaconda3—-<version>-Linux-x86_64.sh }

Follow the prompts to complete the installation. Verify with:

[conda —-—-version }

Windows: Download the Windows installer from Anaconda Downloads. Run the . exe file and follow the instruc-
tions. Open Anaconda Prompt or PowerShell and verify:

[conda —-—version }

5.2.2 Installing Miniconda

macOS: Go to the Miniconda Downloads page, download the macOS installer, open the . pkg file, and follow the
instructions. Open a terminal and verify:

[conda —-—version J

Linux: Download the Linux installer from Miniconda Downloads. Open a terminal and run:

[bash ~/Downloads/Miniconda3-latest-Linux-x86_64.sh }

Follow the prompts to complete the installation. Verify with:

[conda —-—version J

Windows: Download the Windows installer from Miniconda Downloads. Run the . exe file and follow the instruc-
tions. Open Anaconda Prompt or PowerShell and verify:

[conda —-—version }

5.2.3 Tips and Notes

* Optionally add conda to your PATH during installation to use it from any terminal.

¢ Update conda after installation:

[conda update conda }

¢ Miniconda is recommended for a lightweight setup.

» Usage of conda environments and package installation will be covered in later sections.
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5.2.4 Summary Table

Step macOS Linux Windows
Download Anaconda / Mini- Same Same
installer conda
Run installer .pkg bash ~/Downloads/ .exe
installer.sh
Verify installa- conda conda —--version conda —--version
tion ——version
Notes Graphical or CLI in- Terminal-based Use Anaconda Prompt or Pow-
staller erShell

5.3 Conda

Conda is a package manager for Python and other languages. It helps you install packages and manage dependencies

easily.

5.3.1 Basics

# check that it is correctly installed:

conda —--version

# keep Conda up-to-date with:
conda update conda

# install a package (Replace "numpy' with the desired package name) :

conda install numpy

# install a specific version:
conda install numpy=1.25

# install multiple packages at once:
conda install numpy pandas matplotlib

# updating packages:
conda update numpy

# removing packages:
conda remove numpy

# searching for packages (replace

‘package_name’ with the

# name of the package you want to find):

conda search package_name

44

Chapter 5. Installing Python and some tools



https://www.anaconda.com/products/distribution
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html

Data Sciences and Spikes

5.3.2 Conda tips

Update Conda regularly to get bug fixes and security updates.

If a package is not found, check alternative channels:

[conda install -c conda-forge package_name

5.3.3 Summary of common Conda commands

Task Command

Check Conda version conda —--version

Update Conda conda update conda

Install package conda install package_name

Install specific version conda install package_name=version
Install multiple packages conda install packagel package?2
Update package conda update package_name

Remove package conda remove package_name

Search for package conda search package_name

Install from channel conda

install -c conda-forge package_name

5.4 Conda virtual environment

5.4.1 Using Virtual Environments

Why Use a Virtual Environment in Python?

The problem without a virtual environment:

¢ By default, when you install a library with pip install, it goes into the system-wide Python.

¢ Risks:

— A\ Version conflicts between projects (e.g., one project needs numpy==1. 20, another numpy==1.

26).

— A\ Risk of breaking system tools that rely on Python (macOS and Homebrew depend on it).

— A\ Environment quickly polluted with dozens of unnecessary packages.

Solution: Virtual Environments

A virtual environment = an isolated copy of Python with its own libraries.

Advantages:
* Project-by-project isolation.

 No conflicts between library versions.

* Easier to share and reproduce a project (requirements.txt or environment .yml).

* You can delete a project without polluting the system.

5.4. Conda virtual environment
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Two Main Choices: venv VS conda

venv (native Python virtual environments)
¢ Included in Python (python -m venv myenv).
 Lightweight, simple to use.
» Package management via pip install.
* Good for:
— Lightweight projects (Flask, Django, scripts).
— General development.
/\ Limitations:
* pip installs only Python libraries.
¢ Some heavy libraries (numpy, scipy, torch, tensorflow...) may require compilation — possible errors.
conda (Anaconda/Miniconda environments)
¢ Also creates isolated environments (conda create —-n myenv python=3.10).
* Can install not only Python libraries, but also system dependencies (BLAS, MKL, CUDA, etc.).
* Precompiled package distribution — fast and reliable installation.
* Good for:
— Data science and machine learning (numpy, pandas, scikit-learn, PyTorch, TensorFlow).
— Multi-language projects (Python + R + CUDA...).
A\ Limitations:
* Heavier than venv.

» Package management can be slightly slower at times.

@ Important

= Another reason to focus on the Anaconda solution

5.4.2 Conda Virtual Environments

Conda: Creating a New Environment

# create a new Conda environment with a specific Python version (Replace 'myenv’
# with the name of your environment and '3.11° with the desired Python version)
conda create —--name myenv python=3.11

# Activate the environment before working in it:
conda activate myenv

# When you are done, deactivate the environment to return to the base environment:
conda deactivate

46 Chapter 5. Installing Python and some tools




Data Sciences and Spikes

Conda: Listing and Removing Environments

# list all available environments:
conda env list

# remove an environment completely:
conda remove ——name myenv —-all

Conda: Installing Packages in an Environment

# install a package in the active environment:
conda install numpy

# install a specific version of a package:
conda install numpy=1.25

# install multiple packages at once:
conda install numpy pandas matplotlib

Conda: Updating and Removing Packages

# update a package in the current environment:
conda update numpy

# remove a package from the environment:
conda remove numpy

Conda: Exporting and Reproducing Environments

# to share or reproduce an environment, export it to a YAML file:
conda env export > environment.yml

# create an environment from a YAML file:
conda env create —-f environment.yml

5.4.3 Conda Tips

» Always use separate environments for different projects to avoid conflicts.
¢ Update Conda regularly with conda update conda.

¢ Use the conda—-forge channel if a package is not found in the default channels:

[conda install -c conda-forge package_name

5.4. Conda virtual environment
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Summary Table of Common Conda Environment Commands

Task

Command

Create environment
Activate environment
Deactivate environment
List environments
Remove environment
Install package

Install specific version
Install multiple packages
Update package
Remove package
Export environment
Create from file

conda
conda
conda
conda
conda
conda
conda
conda
conda
conda
conda
conda

create —--name myenv python=3.11
activate myenv

deactivate

env list

remove ——-name myenv —-all
install package_name

install package_name=version
install packagel package?2
update package_name

remove package_name

env export > environment.yml
env create —-f environment.yml

5.5 Setting Up the Conda Virtual Environment for This Project

This section is intended for macOS users.

To run this Jupyter Book, I make use of a conda virtual environment, whose recipe i contained in
the file environment.yml that describes everything needed to create the conda environment named
python-dsspikes-env:

!cat environment.yml

name: python-dsspikes-env
channels:

- conda-forge

- defaults
dependencies:

python=3.11
numpy=1.26
matplotlib=3.8

name:

pandoc=3.8

seaborn=0.12
jupyter-book=1.0.4
Jjupyterlab=4.1
ipykernel

csvkit

pip

pip:

pyabf==2.3.8

# removed build hash

python-dsspikes—env tells conda what name you assign to the environment. WHen you run:

[conda env create —-f environment.yml

Conda reads that line and creates an environment with that name. So after creation, you’ll activate it with:

[conda activate python-dsspikes-env

Each time you run it, conda will move one step “up”: If you’re inside python-dsspikes-env, it will go back to (base).
If you’re already in (base), it will deactivate completely (no environment active). So the cycle is:
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conda activate python-dsspikes-env
# ... work here
conda deactivate

The quickest way to check which conda environment is active is:

[conda info —--envs

or its shorthand:

[conda env list

hence:

(python-dsspikes—-env) data-science-spikes$ conda env list
# conda environments:

#
base /Users/campillo/miniforge3
myenv /Users/campillo/miniforge3/envs/myenv

python-dsspikes—env * /Users/campillo/miniforge3/envs/python-dsspikes—env

¢ The * shows which environment is currently active.

e In your shell prompt, the active environment name also appears in parentheses, e.g.
(python—-dsspikes—-env) data-science-spikes$ (here (conda_virtual_env) di-
rectory_name.
To check the active conda environment inside a Jupyter notebook, you have a few options:
1. Check sys.executable
import sys
sys.executable # This shows the path to the Python binary being used.
'/Users/campillo/miniforge3/envs/python-dsspikes-env/bin/python'
2. Check environment variables
import os
os.environ.get ("CONDA_DEFAULT_ENV")
'python-dsspikes-env'
3. Print Python packages & versions To confirm everything is coming from the right env:
'which python
'python --version
'pip list | grep -E "pyabf|matplotlib|seaborn"
/Users/campillo/miniforge3/envs/python-dsspikes—-env/bin/python
Python 3.11.13
matplotlib 3.8.4
matplotlib-inline 0.1.7
pyabf 2.3.8
seaborn 0.12.2
and !pip list for the complete list.
Setting Up the Conda Virtual Environment for This Project
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This project uses Python packages such as numpy, matplotlib, seaborn, and pyabf.
To ensure reproducibility and avoid conflicts with other Python projects, we recommend using a dedicated Conda
virtual environment.

1. Create the environment - Run the following command in your terminal:

[conda env create -f environment.yml

This will create a new environment named jupyter-env (as specified in environment.yml). All
required packages for this Jupyter Book project will be installed.

2. Activate the environment

[conda activate jupyter—env

Your terminal prompt should now show (jupyter-env), indicating the environment is active.

3. Make the environment available in Jupyter

python -m ipykernel install —-—-user ——name=jupyter-env —--display-name "Python.

< (jupyter—-env)

This allows notebooks to select the correct kernel.

4. Verify installation - You can test that everything is installed correctly:

[python —c "import numpy, matplotlib, seaborn, pyabf; print ('All imports OK!')"

If no errors appear, the environment is ready to use.

5. Launch Jupyter Lab or Notebook

# Launch Jupyter Lab
jupyter lab

# or launch classic Jupyter Notebook
jupyter notebook

In the notebook (top right), select Kernel - Python (jupyter—-env).
Python (jupyter-env)
Python 3 (ipykernel)
No Kernel
1_context.ipynb (f47217d1)

3_databases.ipynb (6b835596)
v 4_pyabfipynb (4c74c3b3)

6. Updating the environment — If you modify environment.yml later (e.g., adding packages), update the environ-
ment:

[conda env update —-f environment.yml —-prune

——prune removes packages no longer listed in environment . yml.
Notes:
» Keep all project-specific packages inside the virtual environment; do not install them in base.

* For reproducibility, commit environment . yml to your repository.
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CHAPTER
SIX

INTERACTIVE COMPUTING WITH JUPYTER BAZAAR

Jupyter, Jupyter Notebook, JupyterLab, Binder / MyBinder, Jupyter{book}, Colab, Deepnote

6.1 Jupyter and around

The Jupyter ecosystem evolved to make computing interactive, reproducible, and shareable. It began with [Python,
an enhanced Python shell for rapid experimentation, and expanded into Jupyter to support multiple languages through
a decoupled kernel-interface model. Jupyter Notebook introduced a web-based environment combining code, out-
puts, and narrative text, ideal for teaching, research, and data analysis. JupyterLab provides a modern, flexible
workspace for managing notebooks, scripts, and data in complex projects. Finally, Jupyter{book} allows structured,
publication-quality books and websites to be built from notebooks and Markdown, fully executable and shareable.
Together, these tools address the need for interactive coding, reproducibility, multi-language support, and clear
communication of computational results, even beyond Python:

» Jupyter is an open-source project that evolved from IPython. IPython originally provided an enhanced inter-
active Python shell, with powerful features like introspection, rich media, and tab-completion, making Python
more user-friendly for experimentation and data analysis. Jupyter extended this idea to multiple program-
ming languages (Python, R, Julia, and more) by separating the kernel (which executes code) from the inter-
face (which displays results interactively).

* Jupyter Notebook builds on this foundation, providing a web-based interactive environment where users can
write and execute code, display rich outputs (plots, images, LaTeX, widgets), and combine them with narrative
text. This allows notebooks to serve as reproducible documents for data analysis, teaching, and scientific
communication.

e JupyterLab is the next-generation interface for Jupyter, offering a modular, flexible environment where
users can work with notebooks, text editors, terminals, and data files all in one workspace. It improves produc-
tivity for complex projects, supports extensions, and makes multi-document workflows smoother than classic
notebooks.

¢ Binder/MyBinder is a cloud service that allows users to launch fully executable Jupyter environments
directly from GitHub repositories. It lets anyone run notebooks or Jupyter Books without installing anything
locally, making content fully interactive and reproducible online.

¢ Jupyter{book} extends the Jupyter ecosystem by allowing users to turn collections of notebooks and Mark-
down files into interactive, publication-quality books and websites. Unlike standalone notebooks, Jupyter
Books provide structured chapters, table-of-contents, cross-references, and can be executed to show live out-
puts, making them ideal for teaching, tutorials, and reproducible scientific publications.

Jupyter Ecosystem Evolution (approximate years)

IPython (2001) - interactive Python shell

Jupyter (2014) - multi-language kernel architecture

(
|
v
(
|

(continues on next page)
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(continued from previous page)

F—— Jupyter Notebook (2015) - web-based interactive notebooks
| - web-based interactive notebooks

\

F—— JupyterLab (2018)

| - modern IDE-like workspace for notebooks & files

— Binder / MyBinder (2017)
\ — cloud service for executable notebooks (and later books)
\
L Jupyter{book} (2018+)
- structured, publication-quality books from notebooks & Markdown

6.2 Colab

Colab is Google’s cloud version of Jupyter Notebook, fully integrated with the Jupyter ecosystem, making it easy to
run, share, and collaborate on notebooks online.

Colab (2017) sits in this ecosystem as a cloud-hosted Jupyter Notebook environment:

¢ Runs notebooks without local setup.

* Provides free CPU/GPU/TPU resources.

* Enables real-time collaboration like Google Docs.

¢ Fully compatible with .ipynb notebooks, so you can open notebooks from GitHub or Jupyter Book in Colab.
Colab is designed:

* For students, researchers, or teams who don’t want to install Python locally.

* To share interactive notebooks with reproducible results.

¢ To test notebooks from GitHub quickly.

6.3 Jupyter {book}

jupyter {book} and two important files:
e _config.xml
e _toc.yml

Launch into interactive computing interfaces

6.3.1 Jupyter backends

the Jupyter inline backend is what converts your Matplotlib figures into embedded images inside notebooks, and

$config InlineBackend. .. is how you control their quality and format.

$config InlineBackend.figure_format = 'pdf' # fine but could be combersome
$config InlineBackend.figure_format = 'svg' # "

$config InlineBackend.figure_format = 'retina' #

%config InlineBackend.figure_format = 'png'

$config InlineBackend.rc = {'figure.dpi': 200} # or 300 for print quality
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with ret ina the Jupyter inline backend actually tells Matplotlib to render the figure at double the standard DPI (so
if your default is 100 dpi, it makes a 200 dpi PNG). Then the notebook displays it at the normal on-screen size, so it

looks sharper on high-density displays (like MacBooks) and also when the image gets embedded in the LaTeX/PDF
build.

Other backends:

$matplotlib inline
$matplotlib notebook
$matplotlib widget

# use inline backend

# interactive plots inside notebook
# interactive with ipywidgets
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CHAPTER
SEVEN

csv IN THE CONTEXT OF pANDA AND CSVKIT

7.1 Basics about csv

CSV, for Comma-Separated Values, is a plain text format where each row represents a record, and columns are
separated by commas (,). Example:

name, age, city
Alice, 34,Paris
Bob, 29, London
Charlie, 41, Rome

CSV is a plain text (ASCII) format that makes data human-readable, easy to generate or parse in virtually any pro-
gramming language (Python, R, SQL, Excel, etc.), and portable across operating systems (Windows, Unix, macOS).
Because it’s just text with no dependencies, CSV files are simple to share—whether by email, version control systems
like GitHub, or quick inspection with tools such as 1ess or cat. They work well for small-to-medium datasets,
even with millions of rows, but come with limitations: all values are treated as text until explicitly parsed, and the
format lacks support for data types or nested/complex structures.

With python there are 2 ways to deal with CSV:

* Built-in support: Python’s standard library includes the ¢ sv module, which lets you read and write CSV files
without installing anything extra. It handles splitting rows into fields, quoting, delimiters, and more.

* With pandas: For data analysis, the pandas library makes CSV handling much more powerful. pandas.
read_csv ("file.csv") loads data directly into a Dat aF rame, automatically inferring types (numbers,
strings, dates) and offering options for missing values, encodings, and delimiters. Saving back is just as easy
with .to_csv ().

Here we will use this second solution. Later we will also present a non-python handy tool called csvkit which
regroups command-line utilities for quick inspection and transformation of CSV files, often faster than writing a
Python script.

7.2 Pandas DataFrame

pandas DataFrame (df) is far better than built-in Python tools like lists, dictionaries, or arrays for the following
reasons:

e Tabular structure built-in
— A DataFrame behaves like a table or spreadsheet: rows = records, columns = fields.
— You don’t have to manually manage parallel lists or nested dictionaries.

¢ Easy indexing and filtering: doing the same with lists/dicts would require loops and conditionals — much more
verbose

» Powerful aggregation & grouping: compute counts, averages, sums, or custom statistics without writing loops

* Built-in handling of missing data

55


https://docs.python.org/3/library/csv.html

Data Sciences and Spikes

— Pandas understands NaN values automatically.
— Built-in functions handle missing data gracefully.
* Integration with plotting and analysis
¢ Easy I/O; Load/save CSV, Excel, SQL, JSON, and more with a single command.
See infra.
Main methods on df:

 Exploring the structure

df . shape # dimensions (rows, columns)
df.columns # list of column names
df .dtypes # data types of each column
df.info () # concise summary
df .head (5) # first 5 rows
df .tail (5) # last 5 rows
* Inspecting the data
df .describe () # statistics (mean, std, min, max, quartiles)
df .value_counts () # count frequency of values (for a Series)
df.unique () # unique values (for a Series)
df.isnull () .sum() # count missing values per column
df.sample (5) # random sample of rows
¢ Selecting and filtering
df['col'] # select one column
df[['coll','col2']] # select multiple columns
df.loc[0] # select by label
df.iloc[0] # select by index
df[df['col'] > 10] # filter rows
* Sorting and grouping
df['col'] # select one column
df[['coll','col2']] # select multiple columns
df.loc[0] # select by label
df.iloc[0] # select by index
df [df['col'] > 10] # filter rows

* Modifying

df .rename (columns={'old':'new'}, inplace=True) # rename columns
df.drop (columns=['col'], inplace=True) # drop column
df .dropna () # drop rows with NaN
df.fillna (0) # fill NaN with 0
df.assign (newcol=df['col']*2) # add new column

* Exporting
df .to_csv('file.csv', index=False) # save as CSV

df.to_excel ('file.x1lsx', index=False) # save as Excel
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7.3 csvkit the command-line Swiss Army knife

7.3.1 Installation under you favorite conda environment

conda install -c conda-forge csvkit # That updates the live environment.

conda activate python-dsspikes—env J

Export the environment back to environment . ym1l: Now that your environment has csvkit, youneed to reflect
it in your YAML file:

[conda env export ——-from-history > environment.yml }

-—from-history ensures only the packages you explicitly installed are recorded (cleaner file, avoids tons of build
hashes). Now your environment . yml will include csvkit in dependencies.

7.3.2 Basics command-line tools
in2esv: Excel Slayer

converts various tabular data formats—Ilike Excel (.xls, .xlsx), DBF, fixed-width, or even Google Sheets—into clean,
standard CSV.

# Convert Excel to CSV and print to stdout
in2csv data.xlsx

# Convert Excel to CSV and save to a file
in2csv data.xlsx > data.csv

# List sheet names 1in an Excel file
in2csv —-n data.xlsx

# Convert a specific sheet
in2csv -s "Sheetl" data.xlsx > data.csv

Convert formats, here CSV to JSON:

[iansv data/records_fake_metadata.csv | csvjson > metadata.json }

csvlook: Data Periscope

Quickly inspect your CSV in the terminal. Allows you to display CSV files in a nicely formatted, readable table in
the terminal — almost like a “pretty-printed” view of your data. Pipe to 1ess -S to scroll horizontally:

[csvlook data/records_fake_metadata.csv | less -S J

Preview the first few rows:

{csvlook data/records_fake_metadata.csv | head —-n 12 J
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csvcut: Data Scalpel

Select columns by name or index:

# By name
csvcut —-c cell_id,protocol,prot-opt data/records_fake_metadata.csv

# By index (first column is 1)
csvcut -c¢ 1,4,6 data/records_fake_metadata.csv

csvgrep: Data Filter

Filter rows based on column values:

# Keep only rows where protocol is IC
csvgrep —c¢ protocol -m IC data/records_fake_metadata.csv

# Keep only rows where prot-opt contains "ramp"
csvgrep —c prot-opt -m ramp data/records_fake_metadata.csv

csvsort: Data Organizer

Sort your CSV by one or more columns:

# Sort by date
csvsort —c date data/records_fake_metadata.csv

# Sort by protocol, then by date
csvsort -c protocol,date data/records_fake_metadata.csv

csvstat: Quick Stats

Get basic stats and info about the CSV:

[csvstat data/records_fake_metadata.csv

Combining commands

You can pipe all the line commands. For example, get cell_id and file_name for all IC steps:

csvgrep —c protocol -m IC data/records_fake_metadata.csv \
| csvgrep -c prot-opt -m steps \
| csvcut —-c cell_id,file_name \
| csvlook
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CHAPTER
EIGHT

8.1 Myst

This page tests MyST Markdown extensions.

DIAGNOSTIC

8.1.1 [?] Task list

¢ [x] Done

e [ ] Not yet done

8.1.2 [?] Admonitions

© Note

This is a note admonition.

A\ Warning

This is a warning admonition.

8.2 Emoji Test Page

This page demonstrates using emojis in a Jupyter Book PDF.

8.2.1 Inline Emoji

Here is a lightbulb emoji inline: :emoji:1F4A1

Here is a rocket emoji inline: :emoji:1F 680
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Data Sciences and Spikes

8.2.2 Emoji with text

e :emoji:1F4A1 Idea: Always document your data!

* :emoji:1F 680 Launch: Start your analysis.

+ :emoji:1F 680 Rocket + Math: £ = mc? :emoji:1F 680
8.2.3 Emoji in a list

1. :emoji:1F4DA Read the documentation

2. :emoji:1F4BB Use Python

3. :emoji:1F4A1 Generate ideas

8.2.4 Emoji in headers

:emoji:1F680 Getting Started

:emoji:1F4A1 Tips & Tricks
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